Sebastian Hensel
11 Publications
2025 | Published | Journal Article | IST-REx-ID: 10011 |
Hensel S, Laux T. 2025. A new varifold solution concept for mean curvature flow: Convergence of the Allen-Cahn equation and weak-strong uniqueness. Journal of Differential Geometry. 130, 209–268.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2024 | Published | Journal Article | IST-REx-ID: 18926 |
Hensel S, Laux T. 2024. BV solutions for mean curvature flow with constant angle: Allen-Cahn approximation and weak-strong uniqueness. Indiana University Mathematics Journal. 73(1), 111–148.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 13043 |
Hensel S, Laux T. 2023. Weak-strong uniqueness for the mean curvature flow of double bubbles. Interfaces and Free Boundaries. 25(1), 37–107.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12079 |
Hensel S, Moser M. 2022. Convergence rates for the Allen–Cahn equation with boundary contact energy: The non-perturbative regime. Calculus of Variations and Partial Differential Equations. 61(6), 201.
[Published Version]
View
| Files available
| DOI
| WoS
2022 | Published | Journal Article | IST-REx-ID: 11842 |
Hensel S, Marveggio A. 2022. Weak-strong uniqueness for the Navier–Stokes equation for two fluids with ninety degree contact angle and same viscosities. Journal of Mathematical Fluid Mechanics. 24(3), 93.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2021 | Draft | Preprint | IST-REx-ID: 10013 |
Hensel S, Laux T. Weak-strong uniqueness for the mean curvature flow of double bubbles. arXiv, 2108.01733.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9307 |
Hensel S. 2021. Finite time extinction for the 1D stochastic porous medium equation with transport noise. Stochastics and Partial Differential Equations: Analysis and Computations. 9, 892–939.
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Thesis | IST-REx-ID: 10007 |
Hensel S. 2021. Curvature driven interface evolution: Uniqueness properties of weak solution concepts. Institute of Science and Technology Austria.
[Published Version]
View
| Files available
| DOI
2020 | Draft | Preprint | IST-REx-ID: 10012 |
Fischer JL, Hensel S, Laux T, Simon T. The local structure of the energy landscape in multiphase mean curvature flow: weak-strong uniqueness and stability of evolutions. arXiv, 2003.05478.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 9196 |
Hensel S, Rosati T. 2020. Modelled distributions of Triebel–Lizorkin type. Studia Mathematica. 252(3), 251–297.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7489 |
Fischer JL, Hensel S. 2020. Weak–strong uniqueness for the Navier–Stokes equation for two fluids with surface tension. Archive for Rational Mechanics and Analysis. 236, 967–1087.
[Published Version]
View
| Files available
| DOI
| WoS
Search
Filter Publications
Display / Sort
Export / Embed
Grants
11 Publications
2025 | Published | Journal Article | IST-REx-ID: 10011 |
Hensel S, Laux T. 2025. A new varifold solution concept for mean curvature flow: Convergence of the Allen-Cahn equation and weak-strong uniqueness. Journal of Differential Geometry. 130, 209–268.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2024 | Published | Journal Article | IST-REx-ID: 18926 |
Hensel S, Laux T. 2024. BV solutions for mean curvature flow with constant angle: Allen-Cahn approximation and weak-strong uniqueness. Indiana University Mathematics Journal. 73(1), 111–148.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 13043 |
Hensel S, Laux T. 2023. Weak-strong uniqueness for the mean curvature flow of double bubbles. Interfaces and Free Boundaries. 25(1), 37–107.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12079 |
Hensel S, Moser M. 2022. Convergence rates for the Allen–Cahn equation with boundary contact energy: The non-perturbative regime. Calculus of Variations and Partial Differential Equations. 61(6), 201.
[Published Version]
View
| Files available
| DOI
| WoS
2022 | Published | Journal Article | IST-REx-ID: 11842 |
Hensel S, Marveggio A. 2022. Weak-strong uniqueness for the Navier–Stokes equation for two fluids with ninety degree contact angle and same viscosities. Journal of Mathematical Fluid Mechanics. 24(3), 93.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2021 | Draft | Preprint | IST-REx-ID: 10013 |
Hensel S, Laux T. Weak-strong uniqueness for the mean curvature flow of double bubbles. arXiv, 2108.01733.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9307 |
Hensel S. 2021. Finite time extinction for the 1D stochastic porous medium equation with transport noise. Stochastics and Partial Differential Equations: Analysis and Computations. 9, 892–939.
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Thesis | IST-REx-ID: 10007 |
Hensel S. 2021. Curvature driven interface evolution: Uniqueness properties of weak solution concepts. Institute of Science and Technology Austria.
[Published Version]
View
| Files available
| DOI
2020 | Draft | Preprint | IST-REx-ID: 10012 |
Fischer JL, Hensel S, Laux T, Simon T. The local structure of the energy landscape in multiphase mean curvature flow: weak-strong uniqueness and stability of evolutions. arXiv, 2003.05478.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 9196 |
Hensel S, Rosati T. 2020. Modelled distributions of Triebel–Lizorkin type. Studia Mathematica. 252(3), 251–297.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7489 |
Fischer JL, Hensel S. 2020. Weak–strong uniqueness for the Navier–Stokes equation for two fluids with surface tension. Archive for Rational Mechanics and Analysis. 236, 967–1087.
[Published Version]
View
| Files available
| DOI
| WoS