A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory
Ben Simon Y, Käfer K, Velicky P, Csicsvari JL, Danzl JG, Jonas PM. 2022. A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory. Nature Communications. 13, 4826.
Download
Journal Article
| Published
| English
Author
Department
Grant
Abstract
The mammalian hippocampal formation (HF) plays a key role in several higher brain functions, such as spatial coding, learning and memory. Its simple circuit architecture is often viewed as a trisynaptic loop, processing input originating from the superficial layers of the entorhinal cortex (EC) and sending it back to its deeper layers. Here, we show that excitatory neurons in layer 6b of the mouse EC project to all sub-regions comprising the HF and receive input from the CA1, thalamus and claustrum. Furthermore, their output is characterized by unique slow-decaying excitatory postsynaptic currents capable of driving plateau-like potentials in their postsynaptic targets. Optogenetic inhibition of the EC-6b pathway affects spatial coding in CA1 pyramidal neurons, while cell ablation impairs not only acquisition of new spatial memories, but also degradation of previously acquired ones. Our results provide evidence of a functional role for cortical layer 6b neurons in the adult brain.
Keywords
Publishing Year
Date Published
2022-08-16
Journal Title
Nature Communications
Acknowledgement
We thank F. Marr and A. Schlögl for technical assistance, E. Kralli-Beller for manuscript editing, as well as C. Sommer and the Imaging and Optics Facility of the Institute of Science and Technology Austria (ISTA) for image analysis scripts and microscopy support. We extend our gratitude to J. Wallenschus and D. Rangel Guerrero for technical assistance acquiring single-unit data and I. Gridchyn for help with single-unit clustering. Finally, we also thank B. Suter for discussions, A. Saunders, M. Jösch, and H. Monyer for critically reading earlier versions of the manuscript, C. Petersen for sharing clearing protocols, and the Scientific Service Units of ISTA for efficient support. This project was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC advanced grant No 692692 to P.J.) and the Fond zur Förderung der Wissenschaftlichen Forschung (Z 312-B27, Wittgenstein award for P.J. and I3600-B27 for J.G.D. and P.V.).
Acknowledged SSUs
Volume
13
Article Number
4826
ISSN
IST-REx-ID
Cite this
Ben Simon Y, Käfer K, Velicky P, Csicsvari JL, Danzl JG, Jonas PM. A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory. Nature Communications. 2022;13. doi:10.1038/s41467-022-32559-8
Ben Simon, Y., Käfer, K., Velicky, P., Csicsvari, J. L., Danzl, J. G., & Jonas, P. M. (2022). A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-022-32559-8
Ben Simon, Yoav, Karola Käfer, Philipp Velicky, Jozsef L Csicsvari, Johann G Danzl, and Peter M Jonas. “A Direct Excitatory Projection from Entorhinal Layer 6b Neurons to the Hippocampus Contributes to Spatial Coding and Memory.” Nature Communications. Springer Nature, 2022. https://doi.org/10.1038/s41467-022-32559-8.
Y. Ben Simon, K. Käfer, P. Velicky, J. L. Csicsvari, J. G. Danzl, and P. M. Jonas, “A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory,” Nature Communications, vol. 13. Springer Nature, 2022.
Ben Simon Y, Käfer K, Velicky P, Csicsvari JL, Danzl JG, Jonas PM. 2022. A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory. Nature Communications. 13, 4826.
Ben Simon, Yoav, et al. “A Direct Excitatory Projection from Entorhinal Layer 6b Neurons to the Hippocampus Contributes to Spatial Coding and Memory.” Nature Communications, vol. 13, 4826, Springer Nature, 2022, doi:10.1038/s41467-022-32559-8.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2022-08-26
MD5 Checksum
405936d9e4d33625d80c093c9713a91f
Export
Marked PublicationsOpen Data ISTA Research Explorer