Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression

Guet CC, Bruneaux L, Oikonomou P, Aldana M, Cluzel P. 2023. Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. Frontiers in Microbiology. 14, 1049255.

Download
OA 2023_FrontiersMicrobiology_Guet.pdf 6.45 MB

Journal Article | Published | English

Scopus indexed
Author
Guet, Calin CISTA ; Bruneaux, L; Oikonomou, P; Aldana, M; Cluzel, P
Department
Abstract
In Gram negative bacteria, the multiple antibiotic resistance or mar operon, is known to control the expression of multi-drug efflux genes that protect bacteria from a wide range of drugs. As many different chemical compounds can induce this operon, identifying the parameters that govern the dynamics of its induction is crucial to better characterize the processes of tolerance and resistance. Most experiments have assumed that the properties of the mar transcriptional network can be inferred from population measurements. However, measurements from an asynchronous population of cells can mask underlying phenotypic variations of single cells. We monitored the activity of the mar promoter in single Escherichia coli cells in linear micro-colonies and established that the response to a steady level of inducer was most heterogeneous within individual colonies for an intermediate value of inducer. Specifically, sub-lineages defined by contiguous daughter-cells exhibited similar promoter activity, whereas activity was greatly variable between different sub-lineages. Specific sub-trees of uniform promoter activity persisted over several generations. Statistical analyses of the lineages suggest that the presence of these sub-trees is the signature of an inducible memory of the promoter state that is transmitted from mother to daughter cells. This single-cell study reveals that the degree of epigenetic inheritance changes as a function of inducer concentration, suggesting that phenotypic inheritance may be an inducible phenotype.
Publishing Year
Date Published
2023-06-20
Journal Title
Frontiers in Microbiology
Acknowledgement
This work was supported by NIH P50 award P50GM081892-02 to the University of Chicago, a catalyst grant from the Chicago Biomedical Consortium with support from The Searle Funds at The Chicago Community Trust to PC, and a Yen Fellowship to CCG. MA was partially supported by PAPIIT-UNAM grant IN-11322.
Volume
14
Article Number
1049255
eISSN
IST-REx-ID

Cite this

Guet CC, Bruneaux L, Oikonomou P, Aldana M, Cluzel P. Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. Frontiers in Microbiology. 2023;14. doi:10.3389/fmicb.2023.1049255
Guet, C. C., Bruneaux, L., Oikonomou, P., Aldana, M., & Cluzel, P. (2023). Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. Frontiers in Microbiology. Frontiers. https://doi.org/10.3389/fmicb.2023.1049255
Guet, Calin C, L Bruneaux, P Oikonomou, M Aldana, and P Cluzel. “Monitoring Lineages of Growing and Dividing Bacteria Reveals an Inducible Memory of Mar Operon Expression.” Frontiers in Microbiology. Frontiers, 2023. https://doi.org/10.3389/fmicb.2023.1049255.
C. C. Guet, L. Bruneaux, P. Oikonomou, M. Aldana, and P. Cluzel, “Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression,” Frontiers in Microbiology, vol. 14. Frontiers, 2023.
Guet CC, Bruneaux L, Oikonomou P, Aldana M, Cluzel P. 2023. Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. Frontiers in Microbiology. 14, 1049255.
Guet, Calin C., et al. “Monitoring Lineages of Growing and Dividing Bacteria Reveals an Inducible Memory of Mar Operon Expression.” Frontiers in Microbiology, vol. 14, 1049255, Frontiers, 2023, doi:10.3389/fmicb.2023.1049255.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2023-07-31
MD5 Checksum
7dd322347512afaa5daf72a0154f2f07


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 37485524
PubMed | Europe PMC

Search this title in

Google Scholar