VRK-1 extends life span by activation of AMPK via phosphorylation

Park S, Artan M, Han SH, Park H-EH, Jung Y, Hwang AB, Shin WS, Kim K-T, Lee S-JV. 2020. VRK-1 extends life span by activation of AMPK via phosphorylation. Science Advances. 6(27), aaw7824.

Download
OA 2020_ScienceAdvances_Park.pdf 1.86 MB [Published Version]

Journal Article | Published | English
Author
Park, Sangsoon; Artan, MuratISTA ; Han, Seung Hyun; Park, Hae-Eun H.; Jung, Yoonji; Hwang, Ara B.; Shin, Won Sik; Kim, Kyong-Tai; Lee, Seung-Jae V.
Department
Abstract
Vaccinia virus–related kinase (VRK) is an evolutionarily conserved nuclear protein kinase. VRK-1, the single Caenorhabditis elegans VRK ortholog, functions in cell division and germline proliferation. However, the role of VRK-1 in postmitotic cells and adult life span remains unknown. Here, we show that VRK-1 increases organismal longevity by activating the cellular energy sensor, AMP-activated protein kinase (AMPK), via direct phosphorylation. We found that overexpression of vrk-1 in the soma of adult C. elegans increased life span and, conversely, inhibition of vrk-1 decreased life span. In addition, vrk-1 was required for longevity conferred by mutations that inhibit C. elegans mitochondrial respiration, which requires AMPK. VRK-1 directly phosphorylated and up-regulated AMPK in both C. elegans and cultured human cells. Thus, our data show that the somatic nuclear kinase, VRK-1, promotes longevity through AMPK activation, and this function appears to be conserved between C. elegans and humans.
Publishing Year
Date Published
2020-07-01
Journal Title
Science Advances
Acknowledgement
This research was supported by grants NRF-2019R1A3B2067745 and NRF-2017R1A5A1015366 funded by the Korean Government (MSIT) through the National Research Foundation (NRF) of Korea to S.-J.V.L. and by grant Basic Science Research Program (No. 2019R1A2C2009440) funded by the Korean Government (MSIT) through the NRF of Korea to K.-T.K.
Volume
6
Issue
27
Article Number
aaw7824
eISSN
IST-REx-ID

Cite this

Park S, Artan M, Han SH, et al. VRK-1 extends life span by activation of AMPK via phosphorylation. Science Advances. 2020;6(27). doi:10.1126/sciadv.aaw7824
Park, S., Artan, M., Han, S. H., Park, H.-E. H., Jung, Y., Hwang, A. B., … Lee, S.-J. V. (2020). VRK-1 extends life span by activation of AMPK via phosphorylation. Science Advances. American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.aaw7824
Park, Sangsoon, Murat Artan, Seung Hyun Han, Hae-Eun H. Park, Yoonji Jung, Ara B. Hwang, Won Sik Shin, Kyong-Tai Kim, and Seung-Jae V. Lee. “VRK-1 Extends Life Span by Activation of AMPK via Phosphorylation.” Science Advances. American Association for the Advancement of Science, 2020. https://doi.org/10.1126/sciadv.aaw7824.
S. Park et al., “VRK-1 extends life span by activation of AMPK via phosphorylation,” Science Advances, vol. 6, no. 27. American Association for the Advancement of Science, 2020.
Park S, Artan M, Han SH, Park H-EH, Jung Y, Hwang AB, Shin WS, Kim K-T, Lee S-JV. 2020. VRK-1 extends life span by activation of AMPK via phosphorylation. Science Advances. 6(27), aaw7824.
Park, Sangsoon, et al. “VRK-1 Extends Life Span by Activation of AMPK via Phosphorylation.” Science Advances, vol. 6, no. 27, aaw7824, American Association for the Advancement of Science, 2020, doi:10.1126/sciadv.aaw7824.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2024-03-04
MD5 Checksum
a37157cd0de709dce5fe03f4a31cd0b6


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar