A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes
Lamprecht C, Plochberger B, Ruprecht V, Wieser S, Rankl C, Heister E, Unterauer B, Brameshuber M, Danzberger J, Lukanov P, Flahaut E, Schütz G, Hinterdorfer P, Ebner A. 2014. A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes. Nanotechnology. 25(12), 125704.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Lamprecht, Constanze;
Plochberger, Birgit;
Ruprecht, VerenaISTA ;
Wieser, StefanISTA ;
Rankl, Christian;
Heister, Elena;
Unterauer, Barbara;
Brameshuber, Mario;
Danzberger, Jürgen;
Lukanov, Petar;
Flahaut, Emmanuel;
Schütz, Gerhard
All
All
Department
Abstract
In the past decade carbon nanotubes (CNTs) have been widely studied as a potential drug-delivery system, especially with functionality for cellular targeting. Yet, little is known about the actual process of docking to cell receptors and transport dynamics after internalization. Here we performed single-particle studies of folic acid (FA) mediated CNT binding to human carcinoma cells and their transport inside the cytosol. In particular, we employed molecular recognition force spectroscopy, an atomic force microscopy based method, to visualize and quantify docking of FA functionalized CNTs to FA binding receptors in terms of binding probability and binding force. We then traced individual fluorescently labeled, FA functionalized CNTs after specific uptake, and created a dynamic 'roadmap' that clearly showed trajectories of directed diffusion and areas of nanotube confinement in the cytosol. Our results demonstrate the potential of a single-molecule approach for investigation of drug-delivery vehicles and their targeting capacity.
Publishing Year
Date Published
2014-03-28
Journal Title
Nanotechnology
Publisher
IOP Publishing
Acknowledgement
This work was supported by EC grant Marie Curie RTN-CT-2006-035616, CARBIO 'Carbon nanotubes for biomedical applications' and Austrian FFG grant mnt-era.net 823980, 'IntelliTip'.
Volume
25
Issue
12
Article Number
125704
IST-REx-ID
Cite this
Lamprecht C, Plochberger B, Ruprecht V, et al. A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes. Nanotechnology. 2014;25(12). doi:10.1088/0957-4484/25/12/125704
Lamprecht, C., Plochberger, B., Ruprecht, V., Wieser, S., Rankl, C., Heister, E., … Ebner, A. (2014). A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes. Nanotechnology. IOP Publishing. https://doi.org/10.1088/0957-4484/25/12/125704
Lamprecht, Constanze, Birgit Plochberger, Verena Ruprecht, Stefan Wieser, Christian Rankl, Elena Heister, Barbara Unterauer, et al. “A Single-Molecule Approach to Explore Binding Uptake and Transport of Cancer Cell Targeting Nanotubes.” Nanotechnology. IOP Publishing, 2014. https://doi.org/10.1088/0957-4484/25/12/125704.
C. Lamprecht et al., “A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes,” Nanotechnology, vol. 25, no. 12. IOP Publishing, 2014.
Lamprecht C, Plochberger B, Ruprecht V, Wieser S, Rankl C, Heister E, Unterauer B, Brameshuber M, Danzberger J, Lukanov P, Flahaut E, Schütz G, Hinterdorfer P, Ebner A. 2014. A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes. Nanotechnology. 25(12), 125704.
Lamprecht, Constanze, et al. “A Single-Molecule Approach to Explore Binding Uptake and Transport of Cancer Cell Targeting Nanotubes.” Nanotechnology, vol. 25, no. 12, 125704, IOP Publishing, 2014, doi:10.1088/0957-4484/25/12/125704.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2020-05-15
MD5 Checksum
df4e03d225a19179e7790f6d87a12332