Bifurcation of the endocytic pathway into Rab5-dependent and -independent transport to the vacuole
Toshima J, Nishinoaki S, Sato Y, Yamamoto W, Furukawa D, Siekhaus DE, Sawaguchi A, Toshima J. 2014. Bifurcation of the endocytic pathway into Rab5-dependent and -independent transport to the vacuole. Nature Communications. 5, 3498.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Toshima, Junko;
Nishinoaki, Show;
Sato, Yoshifumi;
Yamamoto, Wataru;
Furukawa, Daiki;
Siekhaus, Daria EISTA ;
Sawaguchi, Akira;
Toshima, Jiro
Department
Abstract
The yeast Rab5 homologue, Vps21p, is known to be involved both in the vacuolar protein sorting (VPS) pathway from the trans-Golgi network to the vacuole, and in the endocytic pathway from the plasma membrane to the vacuole. However, the intracellular location at which these two pathways converge remains unclear. In addition, the endocytic pathway is not completely blocked in yeast cells lacking all Rab5 genes, suggesting the existence of an unidentified route that bypasses the Rab5-dependent endocytic pathway. Here we show that convergence of the endocytic and VPS pathways occurs upstream of the requirement for Vps21p in these pathways. We also identify a previously unidentified endocytic pathway mediated by the AP-3 complex. Importantly, the AP-3-mediated pathway appears mostly intact in Rab5-disrupted cells, and thus works as an alternative route to the vacuole/lysosome. We propose that the endocytic traffic branches into two routes to reach the vacuole: a Rab5-dependent VPS pathway and a Rab5-independent AP-3-mediated pathway.
Publishing Year
Date Published
2014-03-25
Journal Title
Nature Communications
Publisher
Nature Publishing Group
Volume
5
Article Number
3498
IST-REx-ID
Cite this
Toshima J, Nishinoaki S, Sato Y, et al. Bifurcation of the endocytic pathway into Rab5-dependent and -independent transport to the vacuole. Nature Communications. 2014;5. doi:10.1038/ncomms4498
Toshima, J., Nishinoaki, S., Sato, Y., Yamamoto, W., Furukawa, D., Siekhaus, D. E., … Toshima, J. (2014). Bifurcation of the endocytic pathway into Rab5-dependent and -independent transport to the vacuole. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms4498
Toshima, Junko, Show Nishinoaki, Yoshifumi Sato, Wataru Yamamoto, Daiki Furukawa, Daria E Siekhaus, Akira Sawaguchi, and Jiro Toshima. “Bifurcation of the Endocytic Pathway into Rab5-Dependent and -Independent Transport to the Vacuole.” Nature Communications. Nature Publishing Group, 2014. https://doi.org/10.1038/ncomms4498.
J. Toshima et al., “Bifurcation of the endocytic pathway into Rab5-dependent and -independent transport to the vacuole,” Nature Communications, vol. 5. Nature Publishing Group, 2014.
Toshima J, Nishinoaki S, Sato Y, Yamamoto W, Furukawa D, Siekhaus DE, Sawaguchi A, Toshima J. 2014. Bifurcation of the endocytic pathway into Rab5-dependent and -independent transport to the vacuole. Nature Communications. 5, 3498.
Toshima, Junko, et al. “Bifurcation of the Endocytic Pathway into Rab5-Dependent and -Independent Transport to the Vacuole.” Nature Communications, vol. 5, 3498, Nature Publishing Group, 2014, doi:10.1038/ncomms4498.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2018-12-12
MD5 Checksum
614fb6579c86d1f95bdd95eeb9ab01b0