Generating synthetic task-based brain fingerprints for population neuroscience using deep learning

Serin E, Ritter K, Schumann G, Banaschewski T, Marquand A, Walter H, Ogoh G, Stahl BC, Brandlistuen R, Schikowski T, Young AH, Xinyang Y, Zhang Z, Agunbiade K, Chen D, Desrivières S, Clinton N, Thompson P, Köhler V, Schwalber A, Calhoun VD, Chang X, Zhang Y, Li Y, Dai Y, Yuan J, Xia Y, Jia T, Renner P, Hese S, Spanlang B, Pearmund C, Athanasiadis AP, Petkoski S, Jirsa V, Schmitt K, Wilbertz JH, Patraskaki M, Sommer P, Heilmann-Heimbach S, Mathey CM, Miller AJ, Claus I, Nöthen MM, Hoffmann P, Forstner AJ, Pastor A, Gallego J, Itatani R, Eiroa-Orosa F, Feixas G, Slater M, Novarino G, Böttger SJ, Tschorn M, Rapp M, Ask H, Kjelkenes R, Fernandez S, Van Der Meer D, Westlye LT, Andreassen OA, Aden R, Seefried B, Nees F, Neidhart M, Stringaris A, Schwarz E, Holz N, Tost H, Meyer-Lindenberg A, Christmann N, Janson K, Schepanski K, Schütz T, Taron UH, Eils R, Roy JC, Lett TA, Kebir H, Polemiti E, Hitchen E, Jentsch M, Serin E, Bernas A, Vaidya N, Twardziok S, Ralser M, Heinz A, Schumann G. 2025. Generating synthetic task-based brain fingerprints for population neuroscience using deep learning. Communications Biology. 8, 1572.

Download
OA 2025_CommunicationsBiology_Serin.pdf 1.59 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Serin, Emin; Ritter, Kerstin; Schumann, Gunter; Banaschewski, Tobias; Marquand, Andre; Walter, Henrik; Ogoh, George; Stahl, Bernd Carsten; Brandlistuen, Ragnhild; Schikowski, Tamara; Young, Allan H.; Xinyang, Yu
All
Department
Abstract
Task-based functional magnetic resonance imaging (fMRI) reveals individual differences in neural correlates of cognition but faces scalability challenges due to cognitive demands, protocol variability, and limited task coverage in large datasets. Here, we propose DeepTaskGen, a deep-learning approach that synthesizes non-acquired task-based contrast maps from resting-state (rs-) fMRI. We validate this approach using the Human Connectome Project lifespan data, then generate 47 contrast maps from 7 different cognitive tasks for over 20,000 individuals from UK Biobank. DeepTaskGen outperforms several benchmarks in generating synthetic task-contrast maps, achieving superior reconstruction performance while retaining inter-individual variation essential for biomarker development. We further show comparable or superior predictive performance of synthetic maps relative to actual maps and rs-connectomes across diverse demographic, cognitive, and clinical variables. This approach facilitates the study of individual differences and the generation of task-related biomarkers by enabling the generation of arbitrary functional cognitive tasks from readily available rs-fMRI data.
Publishing Year
Date Published
2025-12-01
Journal Title
Communications Biology
Publisher
Springer Nature
Acknowledgement
Funded by the European Union (Grant agreement No 101057429). Complementary funding was received by UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee (10131373 and 10038599) and the National Key R&D Program of Ministry of Science and Technology of China (MOST 2023YFE0199700). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union, the European Health and Digital Executive Agency (HADEA), UKRI or MOST. Neither the European Union nor HADEA nor UKRI nor MOST can be held responsible for them. This work has also been supported by a Grant from the German Research Foundation to the ENIGMA task-based fMRI Working Group (DFG ER 724/4–1, WA 1539/11–1). Data used in this study were provided in part by the Human Connectome Project, WU-Minn Consortium (principal investigators: D. Van Essen and K. Ugurbil; grant number 1U54MH091657), funded by the 16 National Institutes of Health (NIH) institutes and centers supporting the NIH Blueprint for Neuroscience Research, and by the McDonnell Center for Systems Neuroscience at Washington University. Additionally, this research utilized data obtained from UK Biobank, a large-scale biomedical database. Open Access funding enabled and organized by Projekt DEAL.
Volume
8
Article Number
1572
eISSN
IST-REx-ID

Cite this

Serin E, Ritter K, Schumann G, et al. Generating synthetic task-based brain fingerprints for population neuroscience using deep learning. Communications Biology. 2025;8. doi:10.1038/s42003-025-09158-6
Serin, E., Ritter, K., Schumann, G., Banaschewski, T., Marquand, A., Walter, H., … Schumann, G. (2025). Generating synthetic task-based brain fingerprints for population neuroscience using deep learning. Communications Biology. Springer Nature. https://doi.org/10.1038/s42003-025-09158-6
Serin, Emin, Kerstin Ritter, Gunter Schumann, Tobias Banaschewski, Andre Marquand, Henrik Walter, George Ogoh, et al. “Generating Synthetic Task-Based Brain Fingerprints for Population Neuroscience Using Deep Learning.” Communications Biology. Springer Nature, 2025. https://doi.org/10.1038/s42003-025-09158-6.
E. Serin et al., “Generating synthetic task-based brain fingerprints for population neuroscience using deep learning,” Communications Biology, vol. 8. Springer Nature, 2025.
Serin E, Ritter K, Schumann G, Banaschewski T, Marquand A, Walter H, Ogoh G, Stahl BC, Brandlistuen R, Schikowski T, Young AH, Xinyang Y, Zhang Z, Agunbiade K, Chen D, Desrivières S, Clinton N, Thompson P, Köhler V, Schwalber A, Calhoun VD, Chang X, Zhang Y, Li Y, Dai Y, Yuan J, Xia Y, Jia T, Renner P, Hese S, Spanlang B, Pearmund C, Athanasiadis AP, Petkoski S, Jirsa V, Schmitt K, Wilbertz JH, Patraskaki M, Sommer P, Heilmann-Heimbach S, Mathey CM, Miller AJ, Claus I, Nöthen MM, Hoffmann P, Forstner AJ, Pastor A, Gallego J, Itatani R, Eiroa-Orosa F, Feixas G, Slater M, Novarino G, Böttger SJ, Tschorn M, Rapp M, Ask H, Kjelkenes R, Fernandez S, Van Der Meer D, Westlye LT, Andreassen OA, Aden R, Seefried B, Nees F, Neidhart M, Stringaris A, Schwarz E, Holz N, Tost H, Meyer-Lindenberg A, Christmann N, Janson K, Schepanski K, Schütz T, Taron UH, Eils R, Roy JC, Lett TA, Kebir H, Polemiti E, Hitchen E, Jentsch M, Serin E, Bernas A, Vaidya N, Twardziok S, Ralser M, Heinz A, Schumann G. 2025. Generating synthetic task-based brain fingerprints for population neuroscience using deep learning. Communications Biology. 8, 1572.
Serin, Emin, et al. “Generating Synthetic Task-Based Brain Fingerprints for Population Neuroscience Using Deep Learning.” Communications Biology, vol. 8, 1572, Springer Nature, 2025, doi:10.1038/s42003-025-09158-6.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2025-11-24
MD5 Checksum
b8b3c1abe7048a09b920082a37e786a5


Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 41238730
PubMed | Europe PMC

Search this title in

Google Scholar