Evolutionary interplay between symbiotic relationships and patterns of signal peptide gain and loss
Hönigschmid P, Bykova N, Schneider R, Ivankov D, Frishman D. 2018. Evolutionary interplay between symbiotic relationships and patterns of signal peptide gain and loss. Genome Biology and Evolution. 10(3), 928–938.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Hönigschmid, Peter;
Bykova, Nadya;
Schneider, René;
Ivankov, DmitriiISTA;
Frishman, Dmitrij
Department
Abstract
Can orthologous proteins differ in terms of their ability to be secreted? To answer this question, we investigated the distribution of signal peptides within the orthologous groups of Enterobacterales. Parsimony analysis and sequence comparisons revealed a large number of signal peptide gain and loss events, in which signal peptides emerge or disappear in the course of evolution. Signal peptide losses prevail over gains, an effect which is especially pronounced in the transition from the free-living or commensal to the endosymbiotic lifestyle. The disproportionate decline in the number of signal peptide-containing proteins in endosymbionts cannot be explained by the overall reduction of their genomes. Signal peptides can be gained and lost either by acquisition/elimination of the corresponding N-terminal regions or by gradual accumulation of mutations. The evolutionary dynamics of signal peptides in bacterial proteins represents a powerful mechanism of functional diversification.
Publishing Year
Date Published
2018-03-01
Journal Title
Genome Biology and Evolution
Publisher
Oxford University Press
Acknowledgement
his work was supported by the Deutsche Forschungsgemeinschaft (grant number FR 1411/9-1). This work was supported by the German Research Foundation (DFG) and the Technical University of Munich within the fund- ing programme Open Access Publish
We thank Goar Frishman for help with the annotation of the
symbiont status of the organisms and Michael Galperin for
useful comments. T
Volume
10
Issue
3
Page
928 - 938
IST-REx-ID
Cite this
Hönigschmid P, Bykova N, Schneider R, Ivankov D, Frishman D. Evolutionary interplay between symbiotic relationships and patterns of signal peptide gain and loss. Genome Biology and Evolution. 2018;10(3):928-938. doi:10.1093/gbe/evy049
Hönigschmid, P., Bykova, N., Schneider, R., Ivankov, D., & Frishman, D. (2018). Evolutionary interplay between symbiotic relationships and patterns of signal peptide gain and loss. Genome Biology and Evolution. Oxford University Press. https://doi.org/10.1093/gbe/evy049
Hönigschmid, Peter, Nadya Bykova, René Schneider, Dmitry Ivankov, and Dmitrij Frishman. “Evolutionary Interplay between Symbiotic Relationships and Patterns of Signal Peptide Gain and Loss.” Genome Biology and Evolution. Oxford University Press, 2018. https://doi.org/10.1093/gbe/evy049.
P. Hönigschmid, N. Bykova, R. Schneider, D. Ivankov, and D. Frishman, “Evolutionary interplay between symbiotic relationships and patterns of signal peptide gain and loss,” Genome Biology and Evolution, vol. 10, no. 3. Oxford University Press, pp. 928–938, 2018.
Hönigschmid P, Bykova N, Schneider R, Ivankov D, Frishman D. 2018. Evolutionary interplay between symbiotic relationships and patterns of signal peptide gain and loss. Genome Biology and Evolution. 10(3), 928–938.
Hönigschmid, Peter, et al. “Evolutionary Interplay between Symbiotic Relationships and Patterns of Signal Peptide Gain and Loss.” Genome Biology and Evolution, vol. 10, no. 3, Oxford University Press, 2018, pp. 928–38, doi:10.1093/gbe/evy049.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2018-12-12
MD5 Checksum
458a7c2c2e79528567edfeb0f326cbe0
Export
Marked PublicationsOpen Data ISTA Research Explorer