A practical guide to optimization in X10 expansion microscopy

Truckenbrodt SM, Sommer CM, Rizzoli SO, Danzl JG. 2019. A practical guide to optimization in X10 expansion microscopy. Nature Protocols. 14(3), 832–863.

Download
OA 181031_Truckenbrodt_ExM_NatProtoc.docx 84.48 MB [Submitted Version]

Journal Article | Published | English

Scopus indexed
Abstract
Expansion microscopy is a relatively new approach to super-resolution imaging that uses expandable hydrogels to isotropically increase the physical distance between fluorophores in biological samples such as cell cultures or tissue slices. The classic gel recipe results in an expansion factor of ~4×, with a resolution of 60–80 nm. We have recently developed X10 microscopy, which uses a gel that achieves an expansion factor of ~10×, with a resolution of ~25 nm. Here, we provide a step-by-step protocol for X10 expansion microscopy. A typical experiment consists of seven sequential stages: (i) immunostaining, (ii) anchoring, (iii) polymerization, (iv) homogenization, (v) expansion, (vi) imaging, and (vii) validation. The protocol presented here includes recommendations for optimization, pitfalls and their solutions, and detailed guidelines that should increase reproducibility. Although our protocol focuses on X10 expansion microscopy, we detail which of these suggestions are also applicable to classic fourfold expansion microscopy. We exemplify our protocol using primary hippocampal neurons from rats, but our approach can be used with other primary cells or cultured cell lines of interest. This protocol will enable any researcher with basic experience in immunostainings and access to an epifluorescence microscope to perform super-resolution microscopy with X10. The procedure takes 3 d and requires ~5 h of actively handling the sample for labeling and expansion, and another ~3 h for imaging and analysis.
Publishing Year
Date Published
2019-03-01
Journal Title
Nature Protocols
Publisher
Nature Publishing Group
Volume
14
Issue
3
Page
832–863
IST-REx-ID

Cite this

Truckenbrodt SM, Sommer CM, Rizzoli SO, Danzl JG. A practical guide to optimization in X10 expansion microscopy. Nature Protocols. 2019;14(3):832–863. doi:10.1038/s41596-018-0117-3
Truckenbrodt, S. M., Sommer, C. M., Rizzoli, S. O., & Danzl, J. G. (2019). A practical guide to optimization in X10 expansion microscopy. Nature Protocols. Nature Publishing Group. https://doi.org/10.1038/s41596-018-0117-3
Truckenbrodt, Sven M, Christoph M Sommer, Silvio O Rizzoli, and Johann G Danzl. “A Practical Guide to Optimization in X10 Expansion Microscopy.” Nature Protocols. Nature Publishing Group, 2019. https://doi.org/10.1038/s41596-018-0117-3.
S. M. Truckenbrodt, C. M. Sommer, S. O. Rizzoli, and J. G. Danzl, “A practical guide to optimization in X10 expansion microscopy,” Nature Protocols, vol. 14, no. 3. Nature Publishing Group, pp. 832–863, 2019.
Truckenbrodt SM, Sommer CM, Rizzoli SO, Danzl JG. 2019. A practical guide to optimization in X10 expansion microscopy. Nature Protocols. 14(3), 832–863.
Truckenbrodt, Sven M., et al. “A Practical Guide to Optimization in X10 Expansion Microscopy.” Nature Protocols, vol. 14, no. 3, Nature Publishing Group, 2019, pp. 832–863, doi:10.1038/s41596-018-0117-3.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Date Uploaded
2021-06-29
MD5 Checksum
7efb9951e7ddf3e3dcc2fb92b859c623


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 30778205
PubMed | Europe PMC

Search this title in

Google Scholar