Nuclear positioning facilitates amoeboid migration along the path of least resistance

Renkawitz J, Kopf A, Stopp JA, de Vries I, Driscoll MK, Merrin J, Hauschild R, Welf ES, Danuser G, Fiolka R, Sixt MK. 2019. Nuclear positioning facilitates amoeboid migration along the path of least resistance. Nature. 568, 546–550.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Author
Abstract
During metazoan development, immune surveillance and cancer dissemination, cells migrate in complex three-dimensional microenvironments1,2,3. These spaces are crowded by cells and extracellular matrix, generating mazes with differently sized gaps that are typically smaller than the diameter of the migrating cell4,5. Most mesenchymal and epithelial cells and some—but not all—cancer cells actively generate their migratory path using pericellular tissue proteolysis6. By contrast, amoeboid cells such as leukocytes use non-destructive strategies of locomotion7, raising the question how these extremely fast cells navigate through dense tissues. Here we reveal that leukocytes sample their immediate vicinity for large pore sizes, and are thereby able to choose the path of least resistance. This allows them to circumnavigate local obstacles while effectively following global directional cues such as chemotactic gradients. Pore-size discrimination is facilitated by frontward positioning of the nucleus, which enables the cells to use their bulkiest compartment as a mechanical gauge. Once the nucleus and the closely associated microtubule organizing centre pass the largest pore, cytoplasmic protrusions still lingering in smaller pores are retracted. These retractions are coordinated by dynamic microtubules; when microtubules are disrupted, migrating cells lose coherence and frequently fragment into migratory cytoplasmic pieces. As nuclear positioning in front of the microtubule organizing centre is a typical feature of amoeboid migration, our findings link the fundamental organization of cellular polarity to the strategy of locomotion.
Publishing Year
Date Published
2019-04-25
Journal Title
Nature
Publisher
Springer Nature
Volume
568
Page
546-550
IST-REx-ID

Cite this

Renkawitz J, Kopf A, Stopp JA, et al. Nuclear positioning facilitates amoeboid migration along the path of least resistance. Nature. 2019;568:546-550. doi:10.1038/s41586-019-1087-5
Renkawitz, J., Kopf, A., Stopp, J. A., de Vries, I., Driscoll, M. K., Merrin, J., … Sixt, M. K. (2019). Nuclear positioning facilitates amoeboid migration along the path of least resistance. Nature. Springer Nature. https://doi.org/10.1038/s41586-019-1087-5
Renkawitz, Jörg, Aglaja Kopf, Julian A Stopp, Ingrid de Vries, Meghan K. Driscoll, Jack Merrin, Robert Hauschild, et al. “Nuclear Positioning Facilitates Amoeboid Migration along the Path of Least Resistance.” Nature. Springer Nature, 2019. https://doi.org/10.1038/s41586-019-1087-5.
J. Renkawitz et al., “Nuclear positioning facilitates amoeboid migration along the path of least resistance,” Nature, vol. 568. Springer Nature, pp. 546–550, 2019.
Renkawitz J, Kopf A, Stopp JA, de Vries I, Driscoll MK, Merrin J, Hauschild R, Welf ES, Danuser G, Fiolka R, Sixt MK. 2019. Nuclear positioning facilitates amoeboid migration along the path of least resistance. Nature. 568, 546–550.
Renkawitz, Jörg, et al. “Nuclear Positioning Facilitates Amoeboid Migration along the Path of Least Resistance.” Nature, vol. 568, Springer Nature, 2019, pp. 546–50, doi:10.1038/s41586-019-1087-5.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 30944468
PubMed | Europe PMC

Search this title in

Google Scholar