Programming temporal morphing of self-actuated shells
Guseinov R, McMahan C, Perez Rodriguez J, Daraio C, Bickel B. 2020. Programming temporal morphing of self-actuated shells. Nature Communications. 11, 237.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Guseinov, RuslanISTA ;
McMahan, Connor;
Perez Rodriguez, JesusISTA;
Daraio, Chiara;
Bickel, BerndISTA
Department
Grant
Abstract
Advances in shape-morphing materials, such as hydrogels, shape-memory polymers and light-responsive polymers have enabled prescribing self-directed deformations of initially flat geometries. However, most proposed solutions evolve towards a target geometry without considering time-dependent actuation paths. To achieve more complex geometries and avoid self-collisions, it is critical to encode a spatial and temporal shape evolution within the initially flat shell. Recent realizations of time-dependent morphing are limited to the actuation of few, discrete hinges and cannot form doubly curved surfaces. Here, we demonstrate a method for encoding temporal shape evolution in architected shells that assume complex shapes and doubly curved geometries. The shells are non-periodic tessellations of pre-stressed contractile unit cells that soften in water at rates prescribed locally by mesostructure geometry. The ensuing midplane contraction is coupled to the formation of encoded curvatures. We propose an inverse design tool based on a data-driven model for unit cells’ temporal responses.
Keywords
Publishing Year
Date Published
2020-01-13
Journal Title
Nature Communications
Volume
11
Article Number
237
ISSN
IST-REx-ID
Cite this
Guseinov R, McMahan C, Perez Rodriguez J, Daraio C, Bickel B. Programming temporal morphing of self-actuated shells. Nature Communications. 2020;11. doi:10.1038/s41467-019-14015-2
Guseinov, R., McMahan, C., Perez Rodriguez, J., Daraio, C., & Bickel, B. (2020). Programming temporal morphing of self-actuated shells. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-019-14015-2
Guseinov, Ruslan, Connor McMahan, Jesus Perez Rodriguez, Chiara Daraio, and Bernd Bickel. “Programming Temporal Morphing of Self-Actuated Shells.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-019-14015-2.
R. Guseinov, C. McMahan, J. Perez Rodriguez, C. Daraio, and B. Bickel, “Programming temporal morphing of self-actuated shells,” Nature Communications, vol. 11. Springer Nature, 2020.
Guseinov R, McMahan C, Perez Rodriguez J, Daraio C, Bickel B. 2020. Programming temporal morphing of self-actuated shells. Nature Communications. 11, 237.
Guseinov, Ruslan, et al. “Programming Temporal Morphing of Self-Actuated Shells.” Nature Communications, vol. 11, 237, Springer Nature, 2020, doi:10.1038/s41467-019-14015-2.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2020_NatureComm_Guseinov.pdf
1.32 MB
Access Level
Open Access
Date Uploaded
2020-01-15
MD5 Checksum
7db23fef2f4cda712f17f1004116ddff
Material in ISTA:
Dissertation containing ISTA record
Research Data
External material:
Press Release
Description
News on IST Homepage
Export
Marked PublicationsOpen Data ISTA Research Explorer