Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants

Narasimhan M, Johnson AJ, Prizak R, Kaufmann W, Tan S, Casillas Perez BE, Friml J. 2020. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife. 9, e52067.

Download
OA 2020_eLife_Narasimhan.pdf 7.25 MB

Journal Article | Published | English

Scopus indexed
Abstract
In plants, clathrin mediated endocytosis (CME) represents the major route for cargo internalisation from the cell surface. It has been assumed to operate in an evolutionary conserved manner as in yeast and animals. Here we report characterisation of ultrastructure, dynamics and mechanisms of plant CME as allowed by our advancement in electron microscopy and quantitative live imaging techniques. Arabidopsis CME appears to follow the constant curvature model and the bona fide CME population generates vesicles of a predominantly hexagonal-basket type; larger and with faster kinetics than in other models. Contrary to the existing paradigm, actin is dispensable for CME events at the plasma membrane but plays a unique role in collecting endocytic vesicles, sorting of internalised cargos and directional endosome movement that itself actively promote CME events. Internalized vesicles display a strongly delayed and sequential uncoating. These unique features highlight the independent evolution of the plant CME mechanism during the autonomous rise of multicellularity in eukaryotes.
Publishing Year
Date Published
2020-01-23
Journal Title
eLife
Volume
9
Article Number
e52067
eISSN
IST-REx-ID

Cite this

Narasimhan M, Johnson AJ, Prizak R, et al. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife. 2020;9. doi:10.7554/eLife.52067
Narasimhan, M., Johnson, A. J., Prizak, R., Kaufmann, W., Tan, S., Casillas Perez, B. E., & Friml, J. (2020). Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.52067
Narasimhan, Madhumitha, Alexander J Johnson, Roshan Prizak, Walter Kaufmann, Shutang Tan, Barbara E Casillas Perez, and Jiří Friml. “Evolutionarily Unique Mechanistic Framework of Clathrin-Mediated Endocytosis in Plants.” ELife. eLife Sciences Publications, 2020. https://doi.org/10.7554/eLife.52067.
M. Narasimhan et al., “Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants,” eLife, vol. 9. eLife Sciences Publications, 2020.
Narasimhan M, Johnson AJ, Prizak R, Kaufmann W, Tan S, Casillas Perez BE, Friml J. 2020. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife. 9, e52067.
Narasimhan, Madhumitha, et al. “Evolutionarily Unique Mechanistic Framework of Clathrin-Mediated Endocytosis in Plants.” ELife, vol. 9, e52067, eLife Sciences Publications, 2020, doi:10.7554/eLife.52067.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2020-02-18
MD5 Checksum
2052daa4be5019534f3a42f200a09f32


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 31971511
PubMed | Europe PMC

Search this title in

Google Scholar