Gene amplification as a form of population-level gene expression regulation
Tomanek I, Grah R, Lagator M, Andersson AMC, Bollback JP, Tkačik G, Guet CC. 2020. Gene amplification as a form of population-level gene expression regulation. Nature Ecology & Evolution. 4(4), 612–625.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Tomanek, IsabellaISTA ;
Grah, RokISTA ;
Lagator, M.;
Andersson, A. M. C.;
Bollback, Jonathan PISTA ;
Tkacik, GasperISTA ;
Guet, Calin CISTA
Department
Abstract
Organisms cope with change by taking advantage of transcriptional regulators. However, when faced with rare environments, the evolution of transcriptional regulators and their promoters may be too slow. Here, we investigate whether the intrinsic instability of gene duplication and amplification provides a generic alternative to canonical gene regulation. Using real-time monitoring of gene-copy-number mutations in Escherichia coli, we show that gene duplications and amplifications enable adaptation to fluctuating environments by rapidly generating copy-number and, therefore, expression-level polymorphisms. This amplification-mediated gene expression tuning (AMGET) occurs on timescales that are similar to canonical gene regulation and can respond to rapid environmental changes. Mathematical modelling shows that amplifications also tune gene expression in stochastic environments in which transcription-factor-based schemes are hard to evolve or maintain. The fleeting nature of gene amplifications gives rise to a generic population-level mechanism that relies on genetic heterogeneity to rapidly tune the expression of any gene, without leaving any genomic signature.
Publishing Year
Date Published
2020-04-01
Journal Title
Nature Ecology & Evolution
Acknowledgement
We thank L. Hurst, N. Barton, M. Pleska, M. Steinrück, B. Kavcic and A. Staron for input on the manuscript, and To. Bergmiller and R. Chait for help with microfluidics experiments. I.T. is a recipient the OMV fellowship. R.G. is a recipient of a DOC (Doctoral Fellowship Programme of the Austrian Academy of Sciences) Fellowship of the Austrian Academy of Sciences.
Volume
4
Issue
4
Page
612-625
ISSN
IST-REx-ID
Cite this
Tomanek I, Grah R, Lagator M, et al. Gene amplification as a form of population-level gene expression regulation. Nature Ecology & Evolution. 2020;4(4):612-625. doi:10.1038/s41559-020-1132-7
Tomanek, I., Grah, R., Lagator, M., Andersson, A. M. C., Bollback, J. P., Tkačik, G., & Guet, C. C. (2020). Gene amplification as a form of population-level gene expression regulation. Nature Ecology & Evolution. Springer Nature. https://doi.org/10.1038/s41559-020-1132-7
Tomanek, Isabella, Rok Grah, M. Lagator, A. M. C. Andersson, Jonathan P Bollback, Gašper Tkačik, and Calin C Guet. “Gene Amplification as a Form of Population-Level Gene Expression Regulation.” Nature Ecology & Evolution. Springer Nature, 2020. https://doi.org/10.1038/s41559-020-1132-7.
I. Tomanek et al., “Gene amplification as a form of population-level gene expression regulation,” Nature Ecology & Evolution, vol. 4, no. 4. Springer Nature, pp. 612–625, 2020.
Tomanek I, Grah R, Lagator M, Andersson AMC, Bollback JP, Tkačik G, Guet CC. 2020. Gene amplification as a form of population-level gene expression regulation. Nature Ecology & Evolution. 4(4), 612–625.
Tomanek, Isabella, et al. “Gene Amplification as a Form of Population-Level Gene Expression Regulation.” Nature Ecology & Evolution, vol. 4, no. 4, Springer Nature, 2020, pp. 612–25, doi:10.1038/s41559-020-1132-7.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
2020_NatureEcolEvo_Tomanek.pdf
745.24 KB
Access Level
Open Access
Date Uploaded
2020-10-09
MD5 Checksum
ef3bbf42023e30b2c24a6278025d2040
Material in ISTA:
Dissertation containing ISTA record
Research Data
Research Data
Used in publication
External material:
Press Release
Description
News on IST Homepage
Export
Marked PublicationsOpen Data ISTA Research Explorer