Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.




283 Publications

2017 | Published | Journal Article | IST-REx-ID: 909 | OA
Akopyan, Arseniy, On the lengths of curves passing through boundary points of a planar convex shape. The American Mathematical Monthly 124 (7). 2017
[Submitted Version] View | DOI | Download Submitted Version (ext.) | WoS | arXiv
 
2017 | Published | Journal Article | IST-REx-ID: 1065 | OA
Chatterjee, Krishnendu, Pushdown reachability with constant treewidth. Information Processing Letters 122. 2017
[Submitted Version] View | Files available | DOI | WoS
 
2017 | Published | Journal Article | IST-REx-ID: 1433 | OA
Bauer, U., Kerber, M., Reininghaus, J., & Wagner, H. (2017). Phat - Persistent homology algorithms toolbox. Journal of Symbolic Computation. Academic Press. https://doi.org/10.1016/j.jsc.2016.03.008
[Published Version] View | Files available | DOI | Download Published Version (ext.) | WoS
 
2017 | Published | Journal Article | IST-REx-ID: 1072 | OA
Bauer, U., & Edelsbrunner, H. (2017). The Morse theory of Čech and delaunay complexes. Transactions of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/tran/6991
[Preprint] View | DOI | Download Preprint (ext.) | WoS | arXiv
 
2017 | Published | Conference Paper | IST-REx-ID: 836
Ethier, M., Jablonski, G., & Mrozek, M. (2017). Finding eigenvalues of self-maps with the Kronecker canonical form. In Special Sessions in Applications of Computer Algebra (Vol. 198, pp. 119–136). Kalamata, Greece: Springer. https://doi.org/10.1007/978-3-319-56932-1_8
View | DOI | WoS
 
2017 | Published | Thesis | IST-REx-ID: 6287 | OA
Nikitenko, A. (2017). Discrete Morse theory for random complexes . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_873
[Published Version] View | Files available | DOI
 
2017 | Published | Journal Article | IST-REx-ID: 718 | OA
Edelsbrunner, Herbert, Expected sizes of poisson Delaunay mosaics and their discrete Morse functions. Advances in Applied Probability 49 (3). 2017
[Preprint] View | Files available | DOI | Download Preprint (ext.) | arXiv
 
2017 | Published | Conference Paper | IST-REx-ID: 688 | OA
Edelsbrunner, Herbert, Topological data analysis with Bregman divergences. 77. 2017
[Published Version] View | Files available | DOI
 
2017 | Published | Journal Article | IST-REx-ID: 1022 | OA
Pranav, P., Edelsbrunner, H., Van De Weygaert, R., Vegter, G., Kerber, M., Jones, B., & Wintraecken, M. (2017). The topology of the cosmic web in terms of persistent Betti numbers. Monthly Notices of the Royal Astronomical Society. Oxford University Press. https://doi.org/10.1093/mnras/stw2862
[Submitted Version] View | DOI | Download Submitted Version (ext.) | WoS | arXiv
 
2017 | Published | Journal Article | IST-REx-ID: 1173 | OA
Edelsbrunner, H., Glazyrin, A., Musin, O., & Nikitenko, A. (2017). The Voronoi functional is maximized by the Delaunay triangulation in the plane. Combinatorica. Springer. https://doi.org/10.1007/s00493-016-3308-y
[Submitted Version] View | DOI | Download Submitted Version (ext.) | WoS | arXiv
 
2017 | Published | Journal Article | IST-REx-ID: 568 | OA
Franek, P., & Krcál, M. (2017). Persistence of zero sets. Homology, Homotopy and Applications. International Press. https://doi.org/10.4310/HHA.2017.v19.n2.a16
[Submitted Version] View | DOI | Download Submitted Version (ext.) | arXiv
 
2017 | Published | Journal Article | IST-REx-ID: 521 | OA
Austin, K., & Virk, Z. (2017). Higson compactification and dimension raising. Topology and Its Applications. Elsevier. https://doi.org/10.1016/j.topol.2016.10.005
[Submitted Version] View | DOI | Download Submitted Version (ext.) | arXiv
 
2017 | Published | Conference Paper | IST-REx-ID: 833 | OA
Heiss, T., & Wagner, H. (2017). Streaming algorithm for Euler characteristic curves of multidimensional images. In M. Felsberg, A. Heyden, & N. Krüger (Eds.) (Vol. 10424, pp. 397–409). Presented at the CAIP: Computer Analysis of Images and Patterns, Ystad, Sweden: Springer. https://doi.org/10.1007/978-3-319-64689-3_32
[Submitted Version] View | DOI | Download Submitted Version (ext.) | WoS | arXiv
 
2017 | Published | Journal Article | IST-REx-ID: 1180 | OA
Akopyan, A., Bárány, I., & Robins, S. (2017). Algebraic vertices of non-convex polyhedra. Advances in Mathematics. Academic Press. https://doi.org/10.1016/j.aim.2016.12.026
[Submitted Version] View | DOI | Download Submitted Version (ext.) | WoS | arXiv
 
2017 | Published | Journal Article | IST-REx-ID: 707 | OA
Akopyan, A., & Karasev, R. (2017). A tight estimate for the waist of the ball . Bulletin of the London Mathematical Society. Wiley. https://doi.org/10.1112/blms.12062
[Preprint] View | DOI | Download Preprint (ext.) | arXiv
 
2016 | Published | Book Chapter | IST-REx-ID: 5805
Sen, N., Biswas, R., & Bhowmick, P. (2016). On some local topological properties of naive discrete sphere. In Computational Topology in Image Context (Vol. 9667, pp. 253–264). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-39441-1_23
View | DOI
 
2016 | Published | Conference Paper | IST-REx-ID: 5806
Biswas, R., & Bhowmick, P. (2016). On functionality of quadraginta octants of naive sphere with application to circle drawing. In Discrete Geometry for Computer Imagery (Vol. 9647, pp. 256–267). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-32360-2_20
View | DOI
 
2016 | Published | Book Chapter | IST-REx-ID: 5809
Biswas, R., Bhowmick, P., & Brimkov, V. E. (2016). On the connectivity and smoothness of discrete spherical circles. In Combinatorial image analysis (Vol. 9448, pp. 86–100). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-26145-4_7
View | DOI
 
2016 | Published | Journal Article | IST-REx-ID: 1216 | OA
Kasten, J., Reininghaus, J., Hotz, I., Hege, H., Noack, B., Daviller, G., & Morzyński, M. (2016). Acceleration feature points of unsteady shear flows. Archives of Mechanics. Polish Academy of Sciences Publishing House.
[Published Version] View | Download Published Version (ext.)
 
2016 | Published | Journal Article | IST-REx-ID: 1272 | OA
Held, M., Huber, S., & Palfrader, P. (2016). Generalized offsetting of planar structures using skeletons. Computer-Aided Design and Applications. Taylor and Francis. https://doi.org/10.1080/16864360.2016.1150718
[Published Version] View | Files available | DOI
 

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed