Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
285 Publications
2021 | Published | Journal Article | IST-REx-ID: 10222 |

Akopyan, A., Edelsbrunner, H., & Nikitenko, A. (2021). The beauty of random polytopes inscribed in the 2-sphere. Experimental Mathematics. Taylor and Francis. https://doi.org/10.1080/10586458.2021.1980459
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 9296 |

Aichholzer, O., Arroyo Guevara, A. M., Masárová, Z., Parada, I., Perz, D., Pilz, A., … Vogtenhuber, B. (2021). On compatible matchings. In 15th International Conference on Algorithms and Computation (Vol. 12635, pp. 221–233). Yangon, Myanmar: Springer Nature. https://doi.org/10.1007/978-3-030-68211-8_18
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 9345 |

Edelsbrunner, H., Heiss, T., Kurlin , V., Smith, P., & Wintraecken, M. (2021). The density fingerprint of a periodic point set. In 37th International Symposium on Computational Geometry (SoCG 2021) (Vol. 189, p. 32:1-32:16). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.32
[Published Version]
View
| Files available
| DOI
2021 | Published | Journal Article | IST-REx-ID: 9317 |

Edelsbrunner, H., & Osang, G. F. (2021). The multi-cover persistence of Euclidean balls. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-021-00281-9
[Published Version]
View
| Files available
| DOI
| WoS
| PubMed | Europe PMC
2021 | Published | Journal Article | IST-REx-ID: 8317 |

Aichholzer, O., Akitaya, H. A., Cheung, K. C., Demaine, E. D., Demaine, M. L., Fekete, S. P., … Schmidt, C. (2021). Folding polyominoes with holes into a cube. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2020.101700
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2021 | Published | Thesis | IST-REx-ID: 9056 |

Osang, G. F. (2021). Multi-cover persistence and Delaunay mosaics. Institute of Science and Technology Austria, Klosterneuburg. https://doi.org/10.15479/AT:ISTA:9056
[Published Version]
View
| Files available
| DOI
2021 | Published | Journal Article | IST-REx-ID: 9465 |

Edelsbrunner, H., Nikitenko, A., & Osang, G. F. (2021). A step in the Delaunay mosaic of order k. Journal of Geometry. Springer Nature. https://doi.org/10.1007/s00022-021-00577-4
[Published Version]
View
| Files available
| DOI
2021 | Published | Conference Paper | IST-REx-ID: 9604 |

Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2021). Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. In Leibniz International Proceedings in Informatics (Vol. 189). Online: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.16
[Published Version]
View
| Files available
| DOI
2021 | Published | Conference Paper | IST-REx-ID: 9605 |

Corbet, R., Kerber, M., Lesnick, M., & Osang, G. F. (2021). Computing the multicover bifiltration. In Leibniz International Proceedings in Informatics (Vol. 189). Online: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.27
[Published Version]
View
| Files available
| DOI
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 10867 |

Akopyan, A., & Karasev, R. (2020). Waist of balls in hyperbolic and spherical spaces. International Mathematics Research Notices. Oxford University Press. https://doi.org/10.1093/imrn/rny037
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 15064 |

Bauer, U., Edelsbrunner, H., Jablonski, G., & Mrozek, M. (2020). Čech-Delaunay gradient flow and homology inference for self-maps. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-020-00058-8
[Published Version]
View
| Files available
| DOI
2020 | Published | Journal Article | IST-REx-ID: 8323 |

Pach, J. (2020). A farewell to Ricky Pollack. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00237-5
View
| DOI
| Download None (ext.)
| WoS
2020 | Published | Conference Paper | IST-REx-ID: 8580
Graff, G., Graff, B., Jablonski, G., & Narkiewicz, K. (2020). The application of persistent homology in the analysis of heart rate variability. In 11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, . Pisa, Italy: IEEE. https://doi.org/10.1109/ESGCO49734.2020.9158054
View
| DOI
| WoS
2020 | Published | Thesis | IST-REx-ID: 7944 |

Masárová, Z. (2020). Reconfiguration problems. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7944
[Published Version]
View
| Files available
| DOI
2020 | Published | Journal Article | IST-REx-ID: 7567 |

Choudhary, A., Kachanovich, S., & Wintraecken, M. (2020). Coxeter triangulations have good quality. Mathematics in Computer Science. Springer Nature. https://doi.org/10.1007/s11786-020-00461-5
[Published Version]
View
| Files available
| DOI
2020 | Published | Conference Paper | IST-REx-ID: 9299 |

Pach, J., Tardos, G., & Tóth, G. (2020). Crossings between non-homotopic edges. In 28th International Symposium on Graph Drawing and Network Visualization (Vol. 12590, pp. 359–371). Virtual, Online: Springer Nature. https://doi.org/10.1007/978-3-030-68766-3_28
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7962 |

Pach, J., Reed, B., & Yuditsky, Y. (2020). Almost all string graphs are intersection graphs of plane convex sets. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00213-z
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 8163 |

Vegter, G., & Wintraecken, M. (2020). Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes. Studia Scientiarum Mathematicarum Hungarica. Akadémiai Kiadó. https://doi.org/10.1556/012.2020.57.2.1454
[Published Version]
View
| Files available
| DOI
| WoS
2020 | Published | Thesis | IST-REx-ID: 7460 |

Ölsböck, K. (2020). The hole system of triangulated shapes. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7460
[Published Version]
View
| Files available
| DOI
2020 | Published | Journal Article | IST-REx-ID: 9249 |

Biswas, R., Largeteau-Skapin, G., Zrour, R., & Andres, E. (2020). Digital objects in rhombic dodecahedron grid. Mathematical Morphology - Theory and Applications. De Gruyter. https://doi.org/10.1515/mathm-2020-0106
[Published Version]
View
| Files available
| DOI