Multiplexed computations in retinal ganglion cells of a single type

Download
OA IST-2018-921-v1+1_s41467-017-02159-y.pdf 2.87 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Deny, Stephane; Ferrari, Ulisse; Mace, Emilie; Yger, Pierre; Caplette, Romain; Picaud, Serge; Tkacik, GasperISTA ; Marre, Olivier
Department
Abstract
In the early visual system, cells of the same type perform the same computation in different places of the visual field. How these cells code together a complex visual scene is unclear. A common assumption is that cells of a single-type extract a single-stimulus feature to form a feature map, but this has rarely been observed directly. Using large-scale recordings in the rat retina, we show that a homogeneous population of fast OFF ganglion cells simultaneously encodes two radically different features of a visual scene. Cells close to a moving object code quasilinearly for its position, while distant cells remain largely invariant to the object's position and, instead, respond nonlinearly to changes in the object's speed. We develop a quantitative model that accounts for this effect and identify a disinhibitory circuit that mediates it. Ganglion cells of a single type thus do not code for one, but two features simultaneously. This richer, flexible neural map might also be present in other sensory systems.
Publishing Year
Date Published
2017-12-06
Journal Title
Nature Communications
Publisher
Nature Publishing Group
Volume
8
Issue
1
Article Number
1964
ISSN
IST-REx-ID
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2018-12-12


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar