Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

144 Publications


2020 | Published | Conference Paper | IST-REx-ID: 8383
Alistarh D-A, Aspnes J, Ellen F, Gelashvili R, Zhu L. Brief Announcement: Why Extension-Based Proofs Fail. In: Proceedings of the 39th Symposium on Principles of Distributed Computing. Association for Computing Machinery; 2020:54-56. doi:10.1145/3382734.3405743
View | DOI
 

2020 | Published | Conference Paper | IST-REx-ID: 7213 | OA
Bhatia S, Chatterjee B, Nathani D, Kaul M. A persistent homology perspective to the link prediction problem. In: Complex Networks and Their Applications VIII. Vol 881. Springer Nature; 2020:27-39. doi:10.1007/978-3-030-36687-2_3
[Submitted Version] View | Files available | DOI | WoS
 

2020 | Published | Journal Article | IST-REx-ID: 7224 | OA
Rybicki J, Abrego N, Ovaskainen O. Habitat fragmentation and species diversity in competitive communities. Ecology Letters. 2020;23(3):506-517. doi:10.1111/ele.13450
[Published Version] View | Files available | DOI | WoS
 

2020 | Published | Conference Paper | IST-REx-ID: 7272 | OA
Arbel-Raviv M, Brown TA, Morrison A. Getting to the root of concurrent binary search tree performance. In: Proceedings of the 2018 USENIX Annual Technical Conference. USENIX Association; 2020:295-306.
[Published Version] View | Download Published Version (ext.)
 

2020 | Published | Conference Paper | IST-REx-ID: 8724 | OA
Konstantinov NH, Frantar E, Alistarh D-A, Lampert C. On the sample complexity of adversarial multi-source PAC learning. In: Proceedings of the 37th International Conference on Machine Learning. Vol 119. ML Research Press; 2020:5416-5425.
[Published Version] View | Files available | arXiv
 

2020 | Published | Conference Paper | IST-REx-ID: 9198 | OA
Shevchenko A, Mondelli M. Landscape connectivity and dropout stability of SGD solutions for over-parameterized neural networks. In: Proceedings of the 37th International Conference on Machine Learning. Vol 119. ML Research Press; 2020:8773-8784.
[Published Version] View | Files available | arXiv
 

2019 | Published | Conference Paper | IST-REx-ID: 6673 | OA
Alistarh D-A, Nadiradze G, Koval N. Efficiency guarantees for parallel incremental algorithms under relaxed schedulers. In: 31st ACM Symposium on Parallelism in Algorithms and Architectures. ACM Press; 2019:145-154. doi:10.1145/3323165.3323201
[Preprint] View | Files available | DOI | Download Preprint (ext.) | WoS | arXiv
 

2019 | Published | Conference Poster | IST-REx-ID: 6485
Koval N, Alistarh D-A, Elizarov R. Lock-Free Channels for Programming via Communicating Sequential Processes. ACM; 2019:417-418. doi:10.1145/3293883.3297000
View | DOI | WoS
 

2019 | Published | Conference Paper | IST-REx-ID: 5947 | OA
Chatterjee B, Peri S, Sa M, Singhal N. A simple and practical concurrent non-blocking unbounded graph with linearizable reachability queries. In: ACM International Conference Proceeding Series. ACM; 2019:168-177. doi:10.1145/3288599.3288617
[Preprint] View | DOI | Download Preprint (ext.) | WoS | arXiv
 

2019 | Published | Conference Paper | IST-REx-ID: 7437 | OA
Yu C, Tang H, Renggli C, et al. Distributed learning over unreliable networks. In: 36th International Conference on Machine Learning, ICML 2019. Vol 2019-June. IMLS; 2019:12481-12512.
[Preprint] View | Download Preprint (ext.) | WoS | arXiv
 

2019 | Published | Conference Paper | IST-REx-ID: 7542 | OA
Wendler C, Alistarh D-A, Püschel M. Powerset convolutional neural networks. In: Vol 32. Neural Information Processing Systems Foundation; 2019:927-938.
[Published Version] View | Download Published Version (ext.) | WoS | arXiv
 

2019 | Published | Conference Paper | IST-REx-ID: 6676 | OA
Alistarh D-A, Aspnes J, Ellen F, Gelashvili R, Zhu L. Why extension-based proofs fail. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. ACM Press; 2019:986-996. doi:10.1145/3313276.3316407
[Preprint] View | Files available | DOI | Download Preprint (ext.) | WoS | arXiv
 

2019 | Published | Conference Paper | IST-REx-ID: 6931 | OA
Nowak T, Rybicki J. Byzantine approximate agreement on graphs. In: 33rd International Symposium on Distributed Computing. Vol 146. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019:29:1--29:17. doi:10.4230/LIPICS.DISC.2019.29
[Published Version] View | Files available | DOI | arXiv
 

2019 | Published | Conference Paper | IST-REx-ID: 6933 | OA
Censor-Hillel K, Dory M, Korhonen J, Leitersdorf D. Fast approximate shortest paths in the congested clique. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin. ACM; 2019:74-83. doi:10.1145/3293611.3331633
[Preprint] View | Files available | DOI | Download Preprint (ext.) | WoS | arXiv
 

2019 | Published | Conference Paper | IST-REx-ID: 6935 | OA
Foerster K-T, Korhonen J, Rybicki J, Schmid S. Does preprocessing help under congestion? In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. ACM; 2019:259-261. doi:10.1145/3293611.3331581
[Preprint] View | DOI | Download Preprint (ext.) | WoS | arXiv
 

2019 | Published | Journal Article | IST-REx-ID: 6936 | OA
Ovaskainen O, Rybicki J, Abrego N. What can observational data reveal about metacommunity processes? Ecography. 2019;42(11):1877-1886. doi:10.1111/ecog.04444
[Published Version] View | Files available | DOI | WoS
 

2019 | Published | Journal Article | IST-REx-ID: 6972 | OA
Lenzen C, Rybicki J. Self-stabilising Byzantine clock synchronisation is almost as easy as consensus. Journal of the ACM. 2019;66(5). doi:10.1145/3339471
[Published Version] View | Files available | DOI | WoS | arXiv
 

2019 | Published | Conference Paper | IST-REx-ID: 7122
Khirirat S, Johansson M, Alistarh D-A. Gradient compression for communication-limited convex optimization. In: 2018 IEEE Conference on Decision and Control. IEEE; 2019. doi:10.1109/cdc.2018.8619625
View | DOI | WoS
 

2019 | Published | Conference Paper | IST-REx-ID: 7201 | OA
Renggli C, Ashkboos S, Aghagolzadeh M, Alistarh D-A, Hoefler T. SparCML: High-performance sparse communication for machine learning. In: International Conference for High Performance Computing, Networking, Storage and Analysis, SC. ACM; 2019. doi:10.1145/3295500.3356222
[Preprint] View | DOI | Download Preprint (ext.) | WoS | arXiv
 

2019 | Published | Journal Article | IST-REx-ID: 7214 | OA
Aganezov S, Zban I, Aksenov V, Alexeev N, Schatz MC. Recovering rearranged cancer chromosomes from karyotype graphs. BMC Bioinformatics. 2019;20. doi:10.1186/s12859-019-3208-4
[Published Version] View | Files available | DOI | WoS
 

Filters and Search Terms

department=DaAl

Search

Filter Publications

Display / Sort

Citation Style: AMA

Export / Embed