Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
151 Publications
2023 | Published | Conference Paper | IST-REx-ID: 14771 |

Iofinova, E. B., Krumes, A., & Alistarh, D.-A. (2023). Bias in pruned vision models: In-depth analysis and countermeasures. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 24364–24373). Vancouver, BC, Canada: IEEE. https://doi.org/10.1109/cvpr52729.2023.02334
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2023 | Published | Conference Paper | IST-REx-ID: 14461 |

Markov, I., Vladu, A., Guo, Q., & Alistarh, D.-A. (2023). Quantized distributed training of large models with convergence guarantees. In Proceedings of the 40th International Conference on Machine Learning (Vol. 202, pp. 24020–24044). Honolulu, Hawaii, HI, United States: ML Research Press.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 14364 |

Alistarh, D.-A., Aspnes, J., Ellen, F., Gelashvili, R., & Zhu, L. (2023). Why extension-based proofs fail. SIAM Journal on Computing. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/20M1375851
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2023 | Published | Conference Paper | IST-REx-ID: 14459 |

Shevchenko, A., Kögler, K., Hassani, H., & Mondelli, M. (2023). Fundamental limits of two-layer autoencoders, and achieving them with gradient methods. In Proceedings of the 40th International Conference on Machine Learning (Vol. 202, pp. 31151–31209). Honolulu, Hawaii, HI, United States: ML Research Press.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 11181 |

Brown, T. A., Sigouin, W., & Alistarh, D.-A. (2022). PathCAS: An efficient middle ground for concurrent search data structures. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (pp. 385–399). Seoul, Republic of Korea: Association for Computing Machinery. https://doi.org/10.1145/3503221.3508410
[Published Version]
View
| Files available
| DOI
| WoS
2022 | Published | Conference Paper | IST-REx-ID: 17088 |

Kurtic, E., Campos, D., Nguyen, T., Frantar, E., Kurtz, M., Fineran, B., … Alistarh, D.-A. (2022). The optimal BERT surgeon: Scalable and accurate second-order pruning for large language models. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (pp. 4163–4181). Abu Dhabi, United Arab Emirates: Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.emnlp-main.279
[Published Version]
View
| Files available
| DOI
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 12182 |

Pacut, M., Parham, M., Rybicki, J., Schmid, S., Suomela, J., & Tereshchenko, A. (2022). Brief announcement: Temporal locality in online algorithms. In 36th International Symposium on Distributed Computing (Vol. 246). Augusta, GA, United States: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.DISC.2022.52
[Published Version]
View
| Files available
| DOI
2022 | Published | Conference Paper | IST-REx-ID: 11707 |

Balliu, A., Hirvonen, J., Melnyk, D., Olivetti, D., Rybicki, J., & Suomela, J. (2022). Local mending. In M. Parter (Ed.), International Colloquium on Structural Information and Communication Complexity (Vol. 13298, pp. 1–20). Paderborn, Germany: Springer Nature. https://doi.org/10.1007/978-3-031-09993-9_1
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 11183 |

Nikabadi, A., & Korhonen, J. (2022). Beyond distributed subgraph detection: Induced subgraphs, multicolored problems and graph parameters. In Q. Bramas, V. Gramoli, & A. Milani (Eds.), 25th International Conference on Principles of Distributed Systems (Vol. 217). Strasbourg, France: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.OPODIS.2021.15
[Published Version]
View
| Files available
| DOI
2022 | Published | Conference Paper | IST-REx-ID: 11180 |

Postnikova, A., Koval, N., Nadiradze, G., & Alistarh, D.-A. (2022). Multi-queues can be state-of-the-art priority schedulers. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (pp. 353–367). Seoul, Republic of Korea: Association for Computing Machinery. https://doi.org/10.1145/3503221.3508432
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 | Research Data Reference | IST-REx-ID: 13076 |

Postnikova, A., Koval, N., Nadiradze, G., & Alistarh, D.-A. (2022). Multi-queues can be state-of-the-art priority schedulers. Zenodo. https://doi.org/10.5281/ZENODO.5733408
[Published Version]
View
| Files available
| DOI
| Download Published Version (ext.)
2022 | Published | Conference Paper | IST-REx-ID: 11844 |

Alistarh, D.-A., Rybicki, J., & Voitovych, S. (2022). Near-optimal leader election in population protocols on graphs. In Proceedings of the Annual ACM Symposium on Principles of Distributed Computing (pp. 246–256). Salerno, Italy: Association for Computing Machinery. https://doi.org/10.1145/3519270.3538435
[Published Version]
View
| Files available
| DOI
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 17087 |

Frantar, E., Singh, S. P., & Alistarh, D.-A. (2022). Optimal brain compression: A framework for accurate post-training quantization and pruning. In 36th Conference on Neural Information Processing Systems (Vol. 35). New Orleans, LA, United States: ML Research Press.
[Submitted Version]
View
| Files available
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 17059 |

Frantar, E., & Alistarh, D.-A. (2022). SPDY: Accurate pruning with speedup guarantees. In 39th International Conference on Machine Learning (Vol. 162, pp. 6726–6743). Baltimore, MD, United States: ML Research Press.
[Published Version]
View
| Files available
| WoS
2022 | Published | Conference Paper | IST-REx-ID: 11184 |

Alistarh, D.-A., Gelashvili, R., & Rybicki, J. (2022). Fast graphical population protocols. In Q. Bramas, V. Gramoli, & A. Milani (Eds.), 25th International Conference on Principles of Distributed Systems (Vol. 217). Strasbourg, France: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.OPODIS.2021.14
[Published Version]
View
| Files available
| DOI
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 8286 |

Alistarh, Dan-Adrian, Dynamic averaging load balancing on cycles. Algorithmica 84 (4). 2022
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 12299 |

Iofinova, E. B., Krumes, A., Kurtz, M., & Alistarh, D.-A. (2022). How well do sparse ImageNet models transfer? In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12256–12266). New Orleans, LA, United States: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/cvpr52688.2022.01195
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 12780 |

Markov, I., Ramezanikebrya, H., & Alistarh, D.-A. (2022). CGX: Adaptive system support for communication-efficient deep learning. In Proceedings of the 23rd ACM/IFIP International Middleware Conference (pp. 241–254). Quebec, QC, Canada: Association for Computing Machinery. https://doi.org/10.1145/3528535.3565248
[Published Version]
View
| Files available
| DOI
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 11420 |

Shevchenko, A., Kungurtsev, V., & Mondelli, M. (2022). Mean-field analysis of piecewise linear solutions for wide ReLU networks. Journal of Machine Learning Research. Journal of Machine Learning Research.
[Published Version]
View
| Files available
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 10853 |

Fedorov, A., Koval, N., & Alistarh, D.-A. (2021). A scalable concurrent algorithm for dynamic connectivity. In Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures (pp. 208–220). Virtual, Online: Association for Computing Machinery. https://doi.org/10.1145/3409964.3461810
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv