Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
49 Publications
2023 | Published | Journal Article | IST-REx-ID: 14239 |

Mauri, M., & Shinder, E. (2023). Homological Bondal-Orlov localization conjecture for rational singularities. Forum of Mathematics, Sigma. Cambridge University Press. https://doi.org/10.1017/fms.2023.65
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 13268 |

Huybrechts, D., & Mauri, M. (2023). On type II degenerations of hyperkähler manifolds. Mathematical Research Letters. International Press. https://doi.org/10.4310/mrl.2023.v30.n1.a6
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 13966 |

Bighin, G., Ho, Q. P., Lemeshko, M., & Tscherbul, T. V. (2023). Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.108.045115
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 10772 |

Arguez, N. H. (2022). Mirror symmetry for the Tate curve via tropical and log corals. Journal of the London Mathematical Society. London Mathematical Society. https://doi.org/10.1112/jlms.12515
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Book Chapter | IST-REx-ID: 12303 |

Mirković, I., Yang, Y., & Zhao, G. (2022). Loop Grassmannians of Quivers and Affine Quantum Groups. In V. Baranovskky, N. Guay, & T. Schedler (Eds.), Representation Theory and Algebraic Geometry (1st ed., pp. 347–392). Cham: Springer Nature; Birkhäuser. https://doi.org/10.1007/978-3-030-82007-7_8
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 10704 |

Hausel, T., & Hitchin, N. (2022). Very stable Higgs bundles, equivariant multiplicity and mirror symmetry. Inventiones Mathematicae. Springer Nature. https://doi.org/10.1007/s00222-021-01093-7
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 9977 |

Mistegaard, W., & Andersen, J. E. (2022). Resurgence analysis of quantum invariants of Seifert fibered homology spheres. Journal of the London Mathematical Society. Wiley. https://doi.org/10.1112/jlms.12506
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12793 |

Yu, H. (2022). A coarse geometric expansion of a variant of Arthur’s truncated traces and some applications. Pacific Journal of Mathematics. Mathematical Sciences Publishers. https://doi.org/10.2140/pjm.2022.321.193
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 | Draft | Preprint | IST-REx-ID: 17157 |

Hausel, T., & Rychlewicz, K. P. (n.d.). Spectrum of equivariant cohomology as a fixed point scheme. arXiv. https://doi.org/10.48550/arXiv.2212.11836
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 6965 |

Rychlewicz, K. P. (2021). The positivity of local equivariant Hirzebruch class for toric varieties. Bulletin of the London Mathematical Society. Wiley. https://doi.org/10.1112/blms.12442
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 10033 |

Ho, Q. P. (2021). The Atiyah-Bott formula and connectivity in chiral Koszul duality. Advances in Mathematics. Elsevier. https://doi.org/10.1016/j.aim.2021.107992
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9359 |

Ho, Q. P. (2021). Homological stability and densities of generalized configuration spaces. Geometry & Topology. Mathematical Sciences Publishers. https://doi.org/10.2140/gt.2021.25.813
[Submitted Version]
View
| Files available
| DOI
| WoS
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9998 |

Koroteev, P., Pushkar, P., Smirnov, A. V., & Zeitlin, A. M. (2021). Quantum K-theory of quiver varieties and many-body systems. Selecta Mathematica. Springer Nature. https://doi.org/10.1007/s00029-021-00698-3
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Journal Article | IST-REx-ID: 9173 |

Srivastava, T. K. (2021). Pathologies of the Hilbert scheme of points of a supersingular Enriques surface. Bulletin Des Sciences Mathematiques. Elsevier. https://doi.org/10.1016/j.bulsci.2021.102957
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9099 |

Srivastava, T. K. (2021). Lifting automorphisms on Abelian varieties as derived autoequivalences. Archiv Der Mathematik. Springer Nature. https://doi.org/10.1007/s00013-020-01564-y
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 15070
Anderson, L., Hausel, T., Mazzeo, R., & Schaposnik, L. (2020). Geometry and physics of Higgs bundles. Oberwolfach Reports. European Mathematical Society. https://doi.org/10.4171/owr/2019/23
View
| DOI
2020 | Published | Journal Article | IST-REx-ID: 8539 |

Su, C., Zhao, G., & Zhong, C. (2020). On the K-theory stable bases of the springer resolution. Annales Scientifiques de l’Ecole Normale Superieure. Société Mathématique de France. https://doi.org/10.24033/asens.2431
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7004 |

Rapcak, M., Soibelman, Y., Yang, Y., & Zhao, G. (2020). Cohomological Hall algebras, vertex algebras and instantons. Communications in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s00220-019-03575-5
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7683 |

Minets, S. (2020). Cohomological Hall algebras for Higgs torsion sheaves, moduli of triples and sheaves on surfaces. Selecta Mathematica, New Series. Springer Nature. https://doi.org/10.1007/s00029-020-00553-x
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7940 |

Yang, Y., & Zhao, G. (2020). The PBW theorem for affine Yangians. Transformation Groups. Springer Nature. https://doi.org/10.1007/s00031-020-09572-6
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv