Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
117 Publications
2019 | Journal Article | IST-REx-ID: 80 |

Deuchert, A., Seiringer, R., & Yngvason, J. (2019). Bose–Einstein condensation in a dilute, trapped gas at positive temperature. Communications in Mathematical Physics. Springer. https://doi.org/10.1007/s00220-018-3239-0
View
| Files available
| DOI
2018 | Conference Paper | IST-REx-ID: 11 |

Leopold, N. K., & Pickl, P. (2018). Mean-field limits of particles in interaction with quantised radiation fields (Vol. 270, pp. 185–214). Presented at the MaLiQS: Macroscopic Limits of Quantum Systems, Munich, Germany: Springer. https://doi.org/10.1007/978-3-030-01602-9_9
View
| DOI
| Download Preprint (ext.)
| arXiv
2018 | Journal Article | IST-REx-ID: 180 |

Lewi, M., Lieb, É., & Seiringer, R. (2018). Statistical mechanics of the uniform electron gas. Journal de l’Ecole Polytechnique - Mathematiques. Ecole Polytechnique. https://doi.org/10.5802/jep.64
View
| Files available
| DOI
| Download Published Version (ext.)
2018 | Journal Article | IST-REx-ID: 295 |

Lundholm, D., & Seiringer, R. (2018). Fermionic behavior of ideal anyons. Letters in Mathematical Physics. Springer. https://doi.org/10.1007/s11005-018-1091-y
View
| Files available
| DOI
| arXiv
2018 | Journal Article | IST-REx-ID: 399 |

Napiórkowski, M. M., Reuvers, R., & Solovej, J. (2018). Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation. EPL. IOP Publishing Ltd. https://doi.org/10.1209/0295-5075/121/10007
View
| DOI
| Download Preprint (ext.)
| arXiv
2018 | Journal Article | IST-REx-ID: 400 |

Deuchert, A., Geisinge, A., Hainzl, C., & Loss, M. (2018). Persistence of translational symmetry in the BCS model with radial pair interaction. Annales Henri Poincare. Springer. https://doi.org/10.1007/s00023-018-0665-7
View
| Files available
| DOI
2018 | Journal Article | IST-REx-ID: 446 |

Frank, R., Nam, P., & Van Den Bosch, H. (2018). The ionization conjecture in Thomas–Fermi–Dirac–von Weizsäcker theory. Communications on Pure and Applied Mathematics. Wiley-Blackwell. https://doi.org/10.1002/cpa.21717
View
| DOI
| Download Preprint (ext.)
| arXiv
2018 | Journal Article | IST-REx-ID: 455 |

Benedikter, N. P., Sok, J., & Solovej, J. (2018). The Dirac–Frenkel principle for reduced density matrices and the Bogoliubov–de Gennes equations. Annales Henri Poincare. Birkhäuser. https://doi.org/10.1007/s00023-018-0644-z
View
| Files available
| DOI
2018 | Journal Article | IST-REx-ID: 154 |

Moser, T., & Seiringer, R. (2018). Stability of the 2+2 fermionic system with point interactions. Mathematical Physics Analysis and Geometry. Springer. https://doi.org/10.1007/s11040-018-9275-3
View
| Files available
| DOI
2018 | Journal Article | IST-REx-ID: 554 |

Napiórkowski, M. M., Reuvers, R., & Solovej, J. (2018). The Bogoliubov free energy functional II: The dilute Limit. Communications in Mathematical Physics. Springer. https://doi.org/10.1007/s00220-017-3064-x
View
| DOI
| Download Submitted Version (ext.)
| arXiv