Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
6 Publications
2021 | Published | Journal Article | IST-REx-ID: 8608 |

Ke, M., et al. “Salicylic Acid Regulates PIN2 Auxin Transporter Hyper-Clustering and Root Gravitropic Growth via Remorin-Dependent Lipid Nanodomain Organization in Arabidopsis Thaliana.” New Phytologist, vol. 229, no. 2, Wiley, 2021, pp. 963–78, doi:10.1111/nph.16915.
[Published Version]
View
| Files available
| DOI
| WoS
| PubMed | Europe PMC
2021 | Published | Journal Article | IST-REx-ID: 9288 |

El Houari, I., et al. “Seedling Developmental Defects upon Blocking CINNAMATE-4-HYDROXYLASE Are Caused by Perturbations in Auxin Transport.” New Phytologist, vol. 230, no. 6, Wiley, 2021, pp. 2275–91, doi:10.1111/nph.17349.
[Published Version]
View
| DOI
| Download Published Version (ext.)
| WoS
| PubMed | Europe PMC
2021 | Published | Journal Article | IST-REx-ID: 9656 |

Han, Huibin, et al. “PIN-Mediated Polar Auxin Transport Regulations in Plant Tropic Responses.” New Phytologist, vol. 232, no. 2, Wiley, 2021, pp. 510–22, doi:10.1111/nph.17617.
[Published Version]
View
| Files available
| DOI
| WoS
| PubMed | Europe PMC
2020 | Published | Journal Article | IST-REx-ID: 6997 |

Zhang, Yuzhou, and Jiří Friml. “Auxin Guides Roots to Avoid Obstacles during Gravitropic Growth.” New Phytologist, vol. 225, no. 3, Wiley, 2020, pp. 1049–52, doi:10.1111/nph.16203.
[Published Version]
View
| Files available
| DOI
| WoS
| PubMed | Europe PMC
2020 | Published | Journal Article | IST-REx-ID: 7500 |

Mazur, E., et al. “Auxin Canalization and Vascular Tissue Formation by TIR1/AFB-Mediated Auxin Signaling in Arabidopsis.” New Phytologist, vol. 226, no. 5, Wiley, 2020, pp. 1375–83, doi:10.1111/nph.16446.
[Published Version]
View
| Files available
| DOI
| WoS
| PubMed | Europe PMC
2019 | Published | Journal Article | IST-REx-ID: 6504 |

Zhang, Yuzhou, et al. “Auxin-Mediated Statolith Production for Root Gravitropism.” New Phytologist, vol. 224, no. 2, Wiley, 2019, pp. 761–74, doi:10.1111/nph.15932.
[Submitted Version]
View
| Files available
| DOI
| WoS
| PubMed | Europe PMC