Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.




253 Publications

2016 | Journal Article | IST-REx-ID: 1360 | OA
Akopyan, A., Balitskiy, A., Karasev, R., & Sharipova, A. (2016). Elementary approach to closed billiard trajectories in asymmetric normed spaces. Proceedings of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/proc/13062
[Preprint] View | DOI | Download Preprint (ext.)
 
2016 | Journal Article | IST-REx-ID: 1408 | OA
Franek, P., & Krcál, M. (2016). On computability and triviality of well groups. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-016-9794-2
[Published Version] View | Files available | DOI
 
2016 | Journal Article | IST-REx-ID: 1289 | OA
Dunaeva, O., Edelsbrunner, H., Lukyanov, A., Machin, M., Malkova, D., Kuvaev, R., & Kashin, S. (2016). The classification of endoscopy images with persistent homology. Pattern Recognition Letters. Elsevier. https://doi.org/10.1016/j.patrec.2015.12.012
[Submitted Version] View | Files available | DOI
 
2016 | Journal Article | IST-REx-ID: 1617 | OA
Pausinger, F., & Steinerberger, S. (2016). On the discrepancy of jittered sampling. Journal of Complexity. Academic Press. https://doi.org/10.1016/j.jco.2015.11.003
[Submitted Version] View | DOI | Download Submitted Version (ext.)
 
2016 | Conference Paper | IST-REx-ID: 5806
Biswas, R., & Bhowmick, P. (2016). On functionality of quadraginta octants of naive sphere with application to circle drawing. In Discrete Geometry for Computer Imagery (Vol. 9647, pp. 256–267). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-32360-2_20
View | DOI
 
2016 | Book Chapter | IST-REx-ID: 5805
Sen, N., Biswas, R., & Bhowmick, P. (2016). On some local topological properties of naive discrete sphere. In Computational Topology in Image Context (Vol. 9667, pp. 253–264). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-39441-1_23
View | DOI
 
2016 | Book Chapter | IST-REx-ID: 5809
Biswas, R., Bhowmick, P., & Brimkov, V. E. (2016). On the connectivity and smoothness of discrete spherical circles. In Combinatorial image analysis (Vol. 9448, pp. 86–100). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-26145-4_7
View | DOI
 
2016 | Journal Article | IST-REx-ID: 1662 | OA
Edelsbrunner, H., & Pausinger, F. (2016). Approximation and convergence of the intrinsic volume. Advances in Mathematics. Academic Press. https://doi.org/10.1016/j.aim.2015.10.004
[Published Version] View | Files available | DOI
 
2015 | Conference Paper | IST-REx-ID: 1424 | OA
Kwitt, R., Huber, S., Niethammer, M., Lin, W., & Bauer, U. (2015). Statistical topological data analysis-A kernel perspective (Vol. 28, pp. 3070–3078). Presented at the NIPS: Neural Information Processing Systems, Montreal, Canada: Neural Information Processing Systems.
[Submitted Version] View | Download Submitted Version (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1483 | OA
Reininghaus, J., Huber, S., Bauer, U., & Kwitt, R. (2015). A stable multi-scale kernel for topological machine learning (pp. 4741–4748). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, USA: IEEE. https://doi.org/10.1109/CVPR.2015.7299106
[Preprint] View | DOI | Download Preprint (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1495 | OA
Edelsbrunner, H., Iglesias Ham, M., & Kurlin, V. (2015). Relaxed disk packing. In Proceedings of the 27th Canadian Conference on Computational Geometry (Vol. 2015–August, pp. 128–135). Ontario, Canada: Queen’s University.
[Submitted Version] View | Download Submitted Version (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1510 | OA
Franek, P., & Krcál, M. (2015). On computability and triviality of well groups (Vol. 34, pp. 842–856). Presented at the SoCG: Symposium on Computational Geometry, Eindhoven, Netherlands: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SOCG.2015.842
[Published Version] View | Files available | DOI
 
2015 | Book Chapter | IST-REx-ID: 1531
Zobel, V., Reininghaus, J., & Hotz, I. (2015). Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature. In I. Hotz & T. Schultz (Eds.), Visualization and Processing of Higher Order Descriptors for Multi-Valued Data (1st ed., Vol. 40, pp. 257–267). Springer. https://doi.org/10.1007/978-3-319-15090-1_13
View | DOI
 
2015 | Journal Article | IST-REx-ID: 1555 | OA
Knipl, D., Pilarczyk, P., & Röst, G. (2015). Rich bifurcation structure in a two patch vaccination model. SIAM Journal on Applied Dynamical Systems. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/140993934
[Published Version] View | DOI | Download Published Version (ext.)
 
2015 | Conference Paper | IST-REx-ID: 1568
Dunaeva, O., Edelsbrunner, H., Lukyanov, A., Machin, M., & Malkova, D. (2015). The classification of endoscopy images with persistent homology. In Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (p. 7034731). Timisoara, Romania: IEEE. https://doi.org/10.1109/SYNASC.2014.81
View | Files available | DOI
 
2015 | Conference Paper | IST-REx-ID: 1567
Edelsbrunner, H. (2015). Shape, homology, persistence, and stability. In 23rd International Symposium (Vol. 9411). Los Angeles, CA, United States: Springer Nature.
View
 
2015 | Journal Article | IST-REx-ID: 1563
Graff, G., & Pilarczyk, P. (2015). An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds. Topological Methods in Nonlinear Analysis. Juliusz Schauder Center for Nonlinear Studies. https://doi.org/10.12775/TMNA.2015.014
View | DOI
 
2015 | Journal Article | IST-REx-ID: 1578
Cao, T., Edelsbrunner, H., & Tan, T. (2015). Triangulations from topologically correct digital Voronoi diagrams. Computational Geometry. Elsevier. https://doi.org/10.1016/j.comgeo.2015.04.001
View | DOI
 
2015 | Journal Article | IST-REx-ID: 1584 | OA
Biedl, T., Held, M., Huber, S., Kaaser, D., & Palfrader, P. (2015). Reprint of: Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2015.01.004
[Published Version] View | Files available | DOI
 
2015 | Journal Article | IST-REx-ID: 1582 | OA
Biedl, T., Held, M., Huber, S., Kaaser, D., & Palfrader, P. (2015). Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2014.08.006
[Published Version] View | Files available | DOI
 
2015 | Journal Article | IST-REx-ID: 1583 | OA
Biedl, T., Held, M., Huber, S., Kaaser, D., & Palfrader, P. (2015). A simple algorithm for computing positively weighted straight skeletons of monotone polygons. Information Processing Letters. Elsevier. https://doi.org/10.1016/j.ipl.2014.09.021
[Published Version] View | Files available | DOI
 
2015 | Book Chapter | IST-REx-ID: 1590 | OA
Aichholzer, O., Biedl, T., Hackl, T., Held, M., Huber, S., Palfrader, P., & Vogtenhuber, B. (2015). Representing directed trees as straight skeletons. In Graph Drawing and Network Visualization (Vol. 9411, pp. 335–347). Los Angeles, CA, United States: Springer Nature. https://doi.org/10.1007/978-3-319-27261-0_28
[Preprint] View | DOI | Download Preprint (ext.)
 
2015 | Journal Article | IST-REx-ID: 1682 | OA
Franek, P., & Krcál, M. (2015). Robust satisfiability of systems of equations. Journal of the ACM. ACM. https://doi.org/10.1145/2751524
[Preprint] View | DOI | Download Preprint (ext.)
 
2015 | Journal Article | IST-REx-ID: 1710 | OA
Akopyan, A., & Plakhov, A. (2015). Minimal resistance of curves under the single impact assumption. Society for Industrial and Applied Mathematics. SIAM. https://doi.org/10.1137/140993843
[Preprint] View | DOI | Download Preprint (ext.)
 
2015 | Journal Article | IST-REx-ID: 1828 | OA
Akopyan, A., Pirogov, S., & Rybko, A. (2015). Invariant measures of genetic recombination process. Journal of Statistical Physics. Springer. https://doi.org/10.1007/s10955-015-1238-5
[Preprint] View | DOI | Download Preprint (ext.)
 
2015 | Journal Article | IST-REx-ID: 1938
Pausinger, F., & Steinerberger, S. (2015). On the distribution of local extrema in quantum chaos. Physics Letters, Section A. Elsevier. https://doi.org/10.1016/j.physleta.2014.12.010
View | DOI
 
2015 | Journal Article | IST-REx-ID: 2035 | OA
Edelsbrunner, H., Jablonski, G., & Mrozek, M. (2015). The persistent homology of a self-map. Foundations of Computational Mathematics. Springer. https://doi.org/10.1007/s10208-014-9223-y
[Published Version] View | Files available | DOI
 
2015 | Journal Article | IST-REx-ID: 1805
Attali, D., Bauer, U., Devillers, O., Glisse, M., & Lieutier, A. (2015). Homological reconstruction and simplification in R3. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2014.08.010
View | Files available | DOI
 
2015 | Journal Article | IST-REx-ID: 1793 | OA
Symonova, O., Topp, C., & Edelsbrunner, H. (2015). DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0127657
[Published Version] View | Files available | DOI
 
2015 | Research Data Reference | IST-REx-ID: 9737
Symonova, O., Topp, C., & Edelsbrunner, H. (2015). Root traits computed by DynamicRoots for the maize root shown in fig 2. Public Library of Science. https://doi.org/10.1371/journal.pone.0127657.s001
[Published Version] View | Files available | DOI
 
2015 | Journal Article | IST-REx-ID: 1792
Pausinger, F., & Svane, A. (2015). A Koksma-Hlawka inequality for general discrepancy systems. Journal of Complexity. Academic Press. https://doi.org/10.1016/j.jco.2015.06.002
View | Files available | DOI
 
2015 | Thesis | IST-REx-ID: 1399
Pausinger, F. (2015). On the approximation of intrinsic volumes. Institute of Science and Technology Austria.
View | Files available
 
2014 | Book Chapter | IST-REx-ID: 10893
Kasten, J., Reininghaus, J., Reich, W., & Scheuermann, G. (2014). Toward the extraction of saddle periodic orbits. In P.-T. Bremer, I. Hotz, V. Pascucci, & R. Peikert (Eds.), Topological Methods in Data Analysis and Visualization III (Vol. 1, pp. 55–69). Cham: Springer. https://doi.org/10.1007/978-3-319-04099-8_4
View | DOI
 
2014 | Journal Article | IST-REx-ID: 1816 | OA
Huber, S., Held, M., Meerwald, P., & Kwitt, R. (2014). Topology-preserving watermarking of vector graphics. International Journal of Computational Geometry and Applications. World Scientific Publishing. https://doi.org/10.1142/S0218195914500034
[Published Version] View | Files available | DOI
 
2014 | Journal Article | IST-REx-ID: 1842 | OA
Cibulka, J., Gao, P., Krcál, M., Valla, T., & Valtr, P. (2014). On the geometric ramsey number of outerplanar graphs. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-014-9646-x
[Submitted Version] View | DOI | Download Submitted Version (ext.)
 
2014 | Journal Article | IST-REx-ID: 1876 | OA
Dolbilin, N., Edelsbrunner, H., Glazyrin, A., & Musin, O. (2014). Functionals on triangulations of delaunay sets. Moscow Mathematical Journal. Independent University of Moscow. https://doi.org/10.17323/1609-4514-2014-14-3-491-504
[Submitted Version] View | DOI | Download Submitted Version (ext.) | arXiv
 
2014 | Journal Article | IST-REx-ID: 1929
Alexeev, V. V., Bogaevskaya, V. G., Preobrazhenskaya, M. M., Ukhalov, A. Y., Edelsbrunner, H., & Yakimova, O. (2014). An algorithm for cartographic generalization that preserves global topology. Journal of Mathematical Sciences. Springer. https://doi.org/10.1007/s10958-014-2165-8
View | DOI
 
2014 | Journal Article | IST-REx-ID: 1930
Günther, D., Jacobson, A., Reininghaus, J., Seidel, H., Sorkine Hornung, O., & Weinkauf, T. (2014). Fast and memory-efficient topological denoising of 2D and 3D scalar fields. IEEE Transactions on Visualization and Computer Graphics. IEEE. https://doi.org/10.1109/TVCG.2014.2346432
View | DOI
 
2014 | Conference Paper | IST-REx-ID: 2043 | OA
Bauer, U., Kerber, M., & Reininghaus, J. (2014). Distributed computation of persistent homology. In C. McGeoch & U. Meyer (Eds.), Proceedings of the Workshop on Algorithm Engineering and Experiments (pp. 31–38). Portland, USA: Society of Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611973198.4
[Submitted Version] View | DOI | Download Submitted Version (ext.)
 
2014 | Book Chapter | IST-REx-ID: 2044 | OA
Bauer, U., Kerber, M., & Reininghaus, J. (2014). Clear and Compress: Computing Persistent Homology in Chunks. In P.-T. Bremer, I. Hotz, V. Pascucci, & R. Peikert (Eds.), Topological Methods in Data Analysis and Visualization III (pp. 103–117). Springer. https://doi.org/10.1007/978-3-319-04099-8_7
[Submitted Version] View | DOI | Download Submitted Version (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2153 | OA
Bauer, U., & Lesnick, M. (2014). Induced matchings of barcodes and the algebraic stability of persistence. In Proceedings of the Annual Symposium on Computational Geometry (pp. 355–364). Kyoto, Japan: ACM. https://doi.org/10.1145/2582112.2582168
[Submitted Version] View | DOI | Download Submitted Version (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2156 | OA
Bauer, U., Ge, X., & Wang, Y. (2014). Measuring distance between Reeb graphs. In Proceedings of the Annual Symposium on Computational Geometry (pp. 464–473). Kyoto, Japan: ACM. https://doi.org/10.1145/2582112.2582169
[Submitted Version] View | DOI | Download Submitted Version (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2155 | OA
Bauer, U., & Edelsbrunner, H. (2014). The morse theory of Čech and Delaunay filtrations. In Proceedings of the Annual Symposium on Computational Geometry (pp. 484–490). Kyoto, Japan: ACM. https://doi.org/10.1145/2582112.2582167
[Submitted Version] View | DOI | Download Submitted Version (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2177
Edelsbrunner, H., & Parsa, S. (2014). On the computational complexity of betti numbers reductions from matrix rank. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 152–160). Portland, USA: SIAM. https://doi.org/10.1137/1.9781611973402.11
View | DOI
 
2014 | Journal Article | IST-REx-ID: 2184 | OA
Čadek, M., Krcál, M., Matoušek, J., Sergeraert, F., Vokřínek, L., & Wagner, U. (2014). Computing all maps into a sphere. Journal of the ACM. ACM. https://doi.org/10.1145/2597629
[Preprint] View | DOI | Download Preprint (ext.)
 
2014 | Conference Paper | IST-REx-ID: 2905 | OA
Edelsbrunner, H., & Morozovy, D. (2014). Persistent homology: Theory and practice (pp. 31–50). Presented at the ECM: European Congress of Mathematics, Kraków, Poland: European Mathematical Society Publishing House. https://doi.org/10.4171/120-1/3
[Submitted Version] View | Files available | DOI
 
2014 | Conference Paper | IST-REx-ID: 10892
Biedl, T., Huber, S., & Palfrader, P. (2014). Planar matchings for weighted straight skeletons. In 25th International Symposium, ISAAC 2014 (Vol. 8889, pp. 117–127). Jeonju, Korea: Springer Nature. https://doi.org/10.1007/978-3-319-13075-0_10
View | Files available | DOI
 
2014 | Book | IST-REx-ID: 6853
Edelsbrunner, H. (2014). A Short Course in Computational Geometry and Topology (1st ed.). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-05957-0
View | Files available | DOI
 
2014 | Conference Paper | IST-REx-ID: 10886
Zobel, V., Reininghaus, J., & Hotz, I. (2014). Visualization of two-dimensional symmetric positive definite tensor fields using the heat kernel signature. In Topological Methods in Data Analysis and Visualization III (pp. 249–262). Springer. https://doi.org/10.1007/978-3-319-04099-8_16
View | DOI
 
2014 | Book Chapter | IST-REx-ID: 10817
Günther, D., Reininghaus, J., Seidel, H.-P., & Weinkauf, T. (2014). Notes on the simplification of the Morse-Smale complex. In P.-T. Bremer, I. Hotz, V. Pascucci, & R. Peikert (Eds.), Topological Methods in Data Analysis and Visualization III. (pp. 135–150). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-04099-8_9
View | DOI
 

Search

Filter Publications