Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

141 Publications


2024 | Published | Conference Paper | IST-REx-ID: 17093 | OA
Communication-efficient federated learning with data and client heterogeneity
H. Zakerinia, S. Talaei, G. Nadiradze, D.-A. Alistarh, in:, Proceedings of the 27th International Conference on Artificial Intelligence and Statistics, ML Research Press, 2024, pp. 3448–3456.
[Preprint] View | Download Preprint (ext.) | arXiv
 

2024 | Published | Conference Paper | IST-REx-ID: 17329 | OA
Game dynamics and equilibrium computation in the population protocol model
D.-A. Alistarh, K. Chatterjee, M. Karrabi, J.M. Lazarsfeld, in:, Proceedings of the 43rd Annual ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2024, pp. 40–49.
[Published Version] View | Files available | DOI
 

2024 | Published | Conference Paper | IST-REx-ID: 17332 | OA
Wait-free trees with asymptotically-efficient range queries
I. Kokorin, V. Yudov, V. Aksenov, D.-A. Alistarh, in:, 2024 IEEE International Parallel and Distributed Processing Symposium, IEEE, 2024, pp. 169–179.
[Preprint] View | DOI | Download Preprint (ext.) | arXiv
 

2024 | Published | Conference Paper | IST-REx-ID: 17456 | OA
L-GreCo: Layerwise-adaptive gradient compression for efficient data-parallel deep learning
I. Markov, K. Alimohammadi, E. Frantar, D.-A. Alistarh, in:, P. Gibbons, G. Pekhimenko, C. De Sa (Eds.), Proceedings of Machine Learning and Systems , Association for Computing Machinery, 2024.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 

2024 | Published | Thesis | IST-REx-ID: 17485 | OA
Compressing large neural networks : Algorithms, systems and scaling laws
E. Frantar, Compressing Large Neural Networks : Algorithms, Systems and Scaling Laws, Institute of Science and Technology Austria, 2024.
[Published Version] View | Files available | DOI
 

2024 | Published | Thesis | IST-REx-ID: 17490 | OA
Communication-efficient distributed training of deep neural networks: An algorithms and systems perspective
I. Markov, Communication-Efficient Distributed Training of Deep Neural Networks: An Algorithms and Systems Perspective, Institute of Science and Technology Austria, 2024.
[Published Version] View | Files available | DOI
 

2024 | Published | Conference Paper | IST-REx-ID: 15011 | OA
How to prune your language model: Recovering accuracy on the "Sparsity May Cry" benchmark
E. Kurtic, T. Hoefler, D.-A. Alistarh, in:, Proceedings of Machine Learning Research, ML Research Press, 2024, pp. 542–553.
[Preprint] View | Download Preprint (ext.) | arXiv
 

2024 | Published | Conference Paper | IST-REx-ID: 18061 | OA
QMoE: Sub-1-bit compression of trillion parameter models
E. Frantar, D.-A. Alistarh, in:, P. Gibbons, G. Pekhimenko, C. De Sa (Eds.), Proceedings of Machine Learning and Systems, 2024.
[Published Version] View | Files available | Download Published Version (ext.)
 

2024 | Published | Conference Paper | IST-REx-ID: 18062 | OA
Scaling laws for sparsely-connected foundation models
E. Frantar, C.R. Ruiz, N. Houlsby, D.-A. Alistarh, U. Evci, in:, The Twelfth International Conference on Learning Representations, 2024.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 

2024 | Published | Conference Paper | IST-REx-ID: 18070
Federated SGD with local asynchrony
B. Chatterjee, V. Kungurtsev, D.-A. Alistarh, in:, Proceedings of the 44th International Conference on Distributed Computing Systems, IEEE, 2024, pp. 857–868.
View | DOI
 

2024 | Published | Conference Paper | IST-REx-ID: 18113 | OA
Extreme compression of large language models via additive quantization
V. Egiazarian, A. Panferov, D. Kuznedelev, E. Frantar, A. Babenko, D.-A. Alistarh, in:, Proceedings of the 41st International Conference on Machine Learning, ML Research Press, 2024, pp. 12284–12303.
[Preprint] View | Download Preprint (ext.) | arXiv
 

2024 | Published | Conference Paper | IST-REx-ID: 18117 | OA
RoSA: Accurate parameter-efficient fine-tuning via robust adaptation
M. Nikdan, S. Tabesh, E. Crncevic, D.-A. Alistarh, in:, Proceedings of the 41st International Conference on Machine Learning, ML Research Press, 2024, pp. 38187–38206.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 

2024 | Published | Conference Paper | IST-REx-ID: 18121 | OA
SPADE: Sparsity-guided debugging for deep neural networks
A.S. Moakhar, E.B. Iofinova, E. Frantar, D.-A. Alistarh, in:, Proceedings of the 41st International Conference on Machine Learning, ML Research Press, 2024, pp. 45955–45987.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 

2024 | Published | Conference Paper | IST-REx-ID: 17469 | OA
Compression of structured data with autoencoders: Provable benefit of nonlinearities and depth
K. Kögler, A. Shevchenko, H. Hassani, M. Mondelli, in:, Proceedings of the 41st International Conference on Machine Learning, ML Research Press, 2024, pp. 24964–25015.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 

2024 | Published | Thesis | IST-REx-ID: 17465 | OA
High-dimensional limits in artificial neural networks
A. Shevchenko, High-Dimensional Limits in Artificial Neural Networks, Institute of Science and Technology Austria, 2024.
[Published Version] View | Files available | DOI
 

2023 | Published | Journal Article | IST-REx-ID: 13179 | OA
CQS: A formally-verified framework for fair and abortable synchronization
N. Koval, D. Khalanskiy, D.-A. Alistarh, Proceedings of the ACM on Programming Languages 7 (2023).
[Published Version] View | Files available | DOI
 

2023 | Published | Conference Paper | IST-REx-ID: 13262 | OA
Provably-efficient and internally-deterministic parallel Union-Find
A. Fedorov, D. Hashemi, G. Nadiradze, D.-A. Alistarh, in:, Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures, Association for Computing Machinery, 2023, pp. 261–271.
[Published Version] View | Files available | DOI | arXiv
 

2023 | Published | Conference Paper | IST-REx-ID: 14260 | OA
Lincheck: A practical framework for testing concurrent data structures on JVM
N. Koval, A. Fedorov, M. Sokolova, D. Tsitelov, D.-A. Alistarh, in:, 35th International Conference on Computer Aided Verification , Springer Nature, 2023, pp. 156–169.
[Published Version] View | Files available | DOI
 

2023 | Published | Journal Article | IST-REx-ID: 14364 | OA
Why extension-based proofs fail
D.-A. Alistarh, J. Aspnes, F. Ellen, R. Gelashvili, L. Zhu, SIAM Journal on Computing 52 (2023) 913–944.
[Preprint] View | Files available | DOI | Download Preprint (ext.) | WoS | arXiv
 

2023 | Published | Conference Paper | IST-REx-ID: 14458 | OA
SparseGPT: Massive language models can be accurately pruned in one-shot
E. Frantar, D.-A. Alistarh, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 10323–10337.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 

Filters and Search Terms

department=DaAl

Search

Filter Publications

Display / Sort

Export / Embed