Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
144 Publications
2024 | Published | Conference Paper | IST-REx-ID: 18975 |

Modoranu, I.-V., Kalinov, A., Kurtic, E., Frantar, E., & Alistarh, D.-A. (2024). Error feedback can accurately compress preconditioners. In 41st International Conference on Machine Learning (Vol. 235, pp. 35910–35933). Vienna, Austria: ML Research Press.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 18976 |

Islamov, R., Safaryan, M., & Alistarh, D.-A. (2024). AsGrad: A sharp unified analysis of asynchronous-SGD algorithms. In Proceedings of The 27th International Conference on Artificial Intelligence and Statistics (Vol. 238, pp. 649–657). Valencia, Spain: ML Research Press.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 18977 |

Dettmers, T., Svirschevski, R. A., Egiazarian, V., Kuznedelev, D., Frantar, E., Ashkboos, S., … Alistarh, D.-A. (2024). SpQR: A sparse-quantized representation for near-lossless LLM weight compression. In 12th International Conference on Learning Representations. Vienna, Austria: OpenReview.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 17093 |

Zakerinia, H., Talaei, S., Nadiradze, G., & Alistarh, D.-A. (2024). Communication-efficient federated learning with data and client heterogeneity. In Proceedings of the 27th International Conference on Artificial Intelligence and Statistics (Vol. 238, pp. 3448–3456). Valencia, Spain: ML Research Press.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 17329 |

Alistarh, D.-A., Chatterjee, K., Karrabi, M., & Lazarsfeld, J. M. (2024). Game dynamics and equilibrium computation in the population protocol model. In Proceedings of the 43rd Annual ACM Symposium on Principles of Distributed Computing (pp. 40–49). Nantes, France: Association for Computing Machinery. https://doi.org/10.1145/3662158.3662768
[Published Version]
View
| Files available
| DOI
2024 | Published | Conference Paper | IST-REx-ID: 17332 |

Kokorin, I., Yudov, V., Aksenov, V., & Alistarh, D.-A. (2024). Wait-free trees with asymptotically-efficient range queries. In 2024 IEEE International Parallel and Distributed Processing Symposium (pp. 169–179). San Francisco, CA, United States: IEEE. https://doi.org/10.1109/IPDPS57955.2024.00023
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 17456 |

Markov, I., Alimohammadi, K., Frantar, E., & Alistarh, D.-A. (2024). L-GreCo: Layerwise-adaptive gradient compression for efficient data-parallel deep learning. In P. Gibbons, G. Pekhimenko, & C. De Sa (Eds.), Proceedings of Machine Learning and Systems (Vol. 6). Athens, Greece: Association for Computing Machinery.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2024 | Published | Thesis | IST-REx-ID: 17485 |

Frantar, E. (2024). Compressing large neural networks : Algorithms, systems and scaling laws. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:17485
[Published Version]
View
| Files available
| DOI
2024 | Published | Thesis | IST-REx-ID: 17490 |

Markov, I. (2024). Communication-efficient distributed training of deep neural networks: An algorithms and systems perspective. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:17490
[Published Version]
View
| Files available
| DOI
2024 | Published | Conference Paper | IST-REx-ID: 15011 |

Kurtic, E., Hoefler, T., & Alistarh, D.-A. (2024). How to prune your language model: Recovering accuracy on the “Sparsity May Cry” benchmark. In Proceedings of Machine Learning Research (Vol. 234, pp. 542–553). Hongkong, China: ML Research Press.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 18061 |

Frantar, E., & Alistarh, D.-A. (2024). QMoE: Sub-1-bit compression of trillion parameter models. In P. Gibbons, G. Pekhimenko, & C. De Sa (Eds.), Proceedings of Machine Learning and Systems (Vol. 6). Santa Clara, CA, USA.
[Published Version]
View
| Files available
| Download Published Version (ext.)
2024 | Published | Conference Paper | IST-REx-ID: 18062 |

Frantar, E., Ruiz, C. R., Houlsby, N., Alistarh, D.-A., & Evci, U. (2024). Scaling laws for sparsely-connected foundation models. In The Twelfth International Conference on Learning Representations. Vienna, Austria.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 18070
Chatterjee, B., Kungurtsev, V., & Alistarh, D.-A. (2024). Federated SGD with local asynchrony. In Proceedings of the 44th International Conference on Distributed Computing Systems (pp. 857–868). Jersey City, NJ, United States: IEEE. https://doi.org/10.1109/ICDCS60910.2024.00084
View
| DOI
2024 | Published | Conference Paper | IST-REx-ID: 18113 |

Egiazarian, V., Panferov, A., Kuznedelev, D., Frantar, E., Babenko, A., & Alistarh, D.-A. (2024). Extreme compression of large language models via additive quantization. In Proceedings of the 41st International Conference on Machine Learning (Vol. 235, pp. 12284–12303). Vienna, Austria: ML Research Press.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 18117 |

Nikdan, M., Tabesh, S., Crncevic, E., & Alistarh, D.-A. (2024). RoSA: Accurate parameter-efficient fine-tuning via robust adaptation. In Proceedings of the 41st International Conference on Machine Learning (Vol. 235, pp. 38187–38206). Vienna, Austria: ML Research Press.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 18121 |

Moakhar, A. S., Iofinova, E. B., Frantar, E., & Alistarh, D.-A. (2024). SPADE: Sparsity-guided debugging for deep neural networks. In Proceedings of the 41st International Conference on Machine Learning (Vol. 235, pp. 45955–45987). Vienna, Austria: ML Research Press.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2024 | Published | Thesis | IST-REx-ID: 17465 |

Shevchenko, A. (2024). High-dimensional limits in artificial neural networks. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:17465
[Published Version]
View
| Files available
| DOI
2024 | Published | Conference Paper | IST-REx-ID: 17469 |

Kögler, K., Shevchenko, A., Hassani, H., & Mondelli, M. (2024). Compression of structured data with autoencoders: Provable benefit of nonlinearities and depth. In Proceedings of the 41st International Conference on Machine Learning (Vol. 235, pp. 24964–25015). Vienna, Austria: ML Research Press.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 13179 |

Koval, N., Khalanskiy, D., & Alistarh, D.-A. (2023). CQS: A formally-verified framework for fair and abortable synchronization. Proceedings of the ACM on Programming Languages. Association for Computing Machinery . https://doi.org/10.1145/3591230
[Published Version]
View
| Files available
| DOI
2023 | Published | Conference Paper | IST-REx-ID: 13262 |

Fedorov, A., Hashemi, D., Nadiradze, G., & Alistarh, D.-A. (2023). Provably-efficient and internally-deterministic parallel Union-Find. In Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures (pp. 261–271). Orlando, FL, United States: Association for Computing Machinery. https://doi.org/10.1145/3558481.3591082
[Published Version]
View
| Files available
| DOI
| arXiv