Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
10717 Publications
2021 | Published | Book Chapter | IST-REx-ID: 13360
Bian, T., Chu, Z., & Klajn, R. (2021). Controlling Self‐Assembly of Nanoparticles Using Light. In N. Giuseppone & A. Walther (Eds.), Out‐of‐Equilibrium (Supra)molecular Systems and Materials (pp. 241–273). Wiley. https://doi.org/10.1002/9783527821990.ch9
View
| DOI
2021 | Published | Journal Article | IST-REx-ID: 13453 |

Renzo, M., & Götberg, Y. L. L. (2021). Evolution of accretor stars in massive binaries: Broader implications from modeling ζ Ophiuchi. The Astrophysical Journal. American Astronomical Society. https://doi.org/10.3847/1538-4357/ac29c5
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 13454 |

Wong, T. L. S., Schwab, J., & Götberg, Y. L. L. (2021). Pre-explosion properties of Helium star donors to thermonuclear supernovae. The Astrophysical Journal. American Astronomical Society. https://doi.org/10.3847/1538-4357/ac27ae
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 13456 |

Berzin, E., Secunda, A., Cen, R., Menegas, A., & Götberg, Y. L. L. (2021). Spectral signatures of population III and envelope-stripped stars in galaxies at the epoch of reionization. The Astrophysical Journal. American Astronomical Society. https://doi.org/10.3847/1538-4357/ac0af6
[Published Version]
View
| DOI
| Download Published Version (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 13457 |

Bodensteiner, J., Sana, H., Wang, C., Langer, N., Mahy, L., Banyard, G., … Tramper, F. (2021). The young massive SMC cluster NGC 330 seen by MUSE. II. Multiplicity properties of the massive-star population. Astronomy & Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/202140507
[Published Version]
View
| DOI
| Download Published Version (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 13458 |

Vartanyan, D., Laplace, E., Renzo, M., Götberg, Y. L. L., Burrows, A., & de Mink, S. E. (2021). Binary-stripped stars as core-collapse supernovae progenitors. The Astrophysical Journal Letters. American Astronomical Society. https://doi.org/10.3847/2041-8213/ac0b42
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 13459 |

Wang, L., Gies, D. R., Peters, G. J., Götberg, Y. L. L., Chojnowski, S. D., Lester, K. V., & Howell, S. B. (2021). The detection and characterization of Be+sdO binaries from HST/STIS FUV spectroscopy. The Astronomical Journal. American Astronomical Society. https://doi.org/10.3847/1538-3881/abf144
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 13995 |

Heck, S., Baykusheva, D. R., Han, M., Ji, J.-B., Perry, C., Gong, X., & Wörner, H. J. (2021). Attosecond interferometry of shape resonances in the recoil frame of CF4. Science Advances. American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.abj8121
[Published Version]
View
| DOI
| Download Published Version (ext.)
| PubMed | Europe PMC
2021 | Published | Journal Article | IST-REx-ID: 13996 |

Baykusheva, D. R., Chacón, A., Lu, J., Bailey, T. P., Sobota, J. A., Soifer, H., … Ghimire, S. (2021). All-optical probe of three-dimensional topological insulators based on high-harmonic generation by circularly polarized laser fields. Nano Letters. American Chemical Society. https://doi.org/10.1021/acs.nanolett.1c02145
[Published Version]
View
| DOI
| Download Published Version (ext.)
| PubMed | Europe PMC
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 13997 |

Baykusheva, D. R., Chacón, A., Kim, D., Kim, D. E., Reis, D. A., & Ghimire, S. (2021). Strong-field physics in three-dimensional topological insulators. Physical Review A. American Physical Society. https://doi.org/10.1103/physreva.103.023101
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Submitted | Preprint | IST-REx-ID: 14097 |

Kulkarni SR, Harrison FA, Grefenstette BW, Earnshaw HP, Andreoni I, Berg DA, Bloom JS, Cenko SB, Chornock R, Christiansen JL, Coughlin MW, Criswell AW, Darvish B, Das KK, De K, Dessart L, Dixon D, Dorsman B, Kareem El-Badry KE-B, Evans C, Ford KES, Fremling C, Gansicke BT, Gezari S, Götberg YLL, Green GM, Graham MJ, Heida M, Ho AYQ, Jaodand AD, Christopher M. Johns-Krull CMJ-K, Kasliwal MM, Lazzarini M, Lu W, Margutti R, Martin DC, Masters DC, McKernan B, Naze Y, Nissanke SM, Parazin B, Perley DA, Phinney ES, Piro AL, Raaijmakers G, Rauw G, Rodriguez AC, Sana H, Senchyna P, Singer LP, Spake JJ, Stassun KG, Stern D, Teplitz HI, Weisz DR, Yao Y. Science with the ultraviolet explorer (UVEX). arXiv, 2111.15608.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 14117 |

Scholkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward causal representation learning. Proceedings of the IEEE. Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/jproc.2021.3058954
[Published Version]
View
| DOI
| Download Published Version (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14176 |

Yèche, H., Dresdner, G., Locatello, F., Hüser, M., & Rätsch, G. (2021). Neighborhood contrastive learning applied to online patient monitoring. In Proceedings of 38th International Conference on Machine Learning (Vol. 139, pp. 11964–11974). Virtual: ML Research Press.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14177 |

Träuble, F., Creager, E., Kilbertus, N., Locatello, F., Dittadi, A., Goyal, A., … Bauer, S. (2021). On disentangled representations learned from correlated data. In Proceedings of the 38th International Conference on Machine Learning (Vol. 139, pp. 10401–10412). Virtual: ML Research Press.
[Published Version]
View
| Download Published Version (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14178 |

Dittadi, A., Träuble, F., Locatello, F., Wüthrich, M., Agrawal, V., Winther, O., … Schölkopf, B. (2021). On the transfer of disentangled representations in realistic settings. In The Ninth International Conference on Learning Representations. Virtual.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14179 |

Kügelgen, J. von, Sharma, Y., Gresele, L., Brendel, W., Schölkopf, B., Besserve, M., & Locatello, F. (2021). Self-supervised learning with data augmentations provably isolates content from style. In Advances in Neural Information Processing Systems (Vol. 34, pp. 16451–16467). Virtual.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14180 |

Rahaman, N., Gondal, M. W., Joshi, S., Gehler, P., Bengio, Y., Locatello, F., & Schölkopf, B. (2021). Dynamic inference with neural interpreters. In Advances in Neural Information Processing Systems (Vol. 34, pp. 10985–10998). Virtual.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14181 |

Dresdner, G., Shekhar, S., Pedregosa, F., Locatello, F., & Rätsch, G. (2021). Boosting variational inference with locally adaptive step-sizes. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (pp. 2337–2343). Montreal, Canada: International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2021/322
[Published Version]
View
| DOI
| Download Published Version (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14182 |

Träuble, F., Kügelgen, J. von, Kleindessner, M., Locatello, F., Schölkopf, B., & Gehler, P. (2021). Backward-compatible prediction updates: A probabilistic approach. In 35th Conference on Neural Information Processing Systems (Vol. 34, pp. 116–128). Virtual.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2021 | Submitted | Preprint | IST-REx-ID: 14221 |

Locatello, F. (n.d.). Enforcing and discovering structure in machine learning. arXiv. https://doi.org/10.48550/arXiv.2111.13693
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv