Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

72 Publications


2021 | Published | Conference Paper | IST-REx-ID: 14180 | OA
Dynamic inference with neural interpreters
N. Rahaman, M.W. Gondal, S. Joshi, P. Gehler, Y. Bengio, F. Locatello, B. Schölkopf, in:, Advances in Neural Information Processing Systems, 2021, pp. 10985–10998.
[Preprint] View | Download Preprint (ext.) | arXiv
 

2021 | Submitted | Preprint | IST-REx-ID: 14221 | OA [Preprint] View | DOI | Download Preprint (ext.) | arXiv
 

2021 | Published | Journal Article | IST-REx-ID: 14117 | OA
Toward causal representation learning
B. Scholkopf, F. Locatello, S. Bauer, N.R. Ke, N. Kalchbrenner, A. Goyal, Y. Bengio, Proceedings of the IEEE 109 (2021) 612–634.
[Published Version] View | DOI | Download Published Version (ext.) | arXiv
 

2021 | Published | Conference Paper | IST-REx-ID: 14176 | OA
Neighborhood contrastive learning applied to online patient monitoring
H. Yèche, G. Dresdner, F. Locatello, M. Hüser, G. Rätsch, in:, Proceedings of 38th International Conference on Machine Learning, ML Research Press, 2021, pp. 11964–11974.
[Preprint] View | Download Preprint (ext.) | arXiv
 

2021 | Published | Conference Paper | IST-REx-ID: 14177 | OA
On disentangled representations learned from correlated data
F. Träuble, E. Creager, N. Kilbertus, F. Locatello, A. Dittadi, A. Goyal, B. Schölkopf, S. Bauer, in:, Proceedings of the 38th International Conference on Machine Learning, ML Research Press, 2021, pp. 10401–10412.
[Published Version] View | Download Published Version (ext.) | arXiv
 

2021 | Published | Conference Paper | IST-REx-ID: 14178 | OA
On the transfer of disentangled representations in realistic settings
A. Dittadi, F. Träuble, F. Locatello, M. Wüthrich, V. Agrawal, O. Winther, S. Bauer, B. Schölkopf, in:, The Ninth International Conference on Learning Representations, 2021.
[Preprint] View | Download Preprint (ext.) | arXiv
 

2021 | Published | Conference Paper | IST-REx-ID: 14179 | OA
Self-supervised learning with data augmentations provably isolates content from style
J. von Kügelgen, Y. Sharma, L. Gresele, W. Brendel, B. Schölkopf, M. Besserve, F. Locatello, in:, Advances in Neural Information Processing Systems, 2021, pp. 16451–16467.
[Preprint] View | Download Preprint (ext.) | arXiv
 

2021 | Published | Conference Paper | IST-REx-ID: 14181 | OA
Boosting variational inference with locally adaptive step-sizes
G. Dresdner, S. Shekhar, F. Pedregosa, F. Locatello, G. Rätsch, in:, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence, 2021, pp. 2337–2343.
[Published Version] View | DOI | Download Published Version (ext.) | arXiv
 

2021 | Published | Conference Paper | IST-REx-ID: 14182 | OA
Backward-compatible prediction updates: A probabilistic approach
F. Träuble, J. von Kügelgen, M. Kleindessner, F. Locatello, B. Schölkopf, P. Gehler, in:, 35th Conference on Neural Information Processing Systems, 2021, pp. 116–128.
[Preprint] View | Download Preprint (ext.) | arXiv
 

2021 | Published | Conference Paper | IST-REx-ID: 14332
Representation learning for out-of-distribution generalization in reinforcement learning
F. Träuble, A. Dittadi, M. Wuthrich, F. Widmaier, P.V. Gehler, O. Winther, F. Locatello, O. Bachem, B. Schölkopf, S. Bauer, in:, ICML 2021 Workshop on Unsupervised Reinforcement Learning, 2021.
View
 

2020 | Published | Journal Article | IST-REx-ID: 14195 | OA
A sober look at the unsupervised learning of disentangled representations and their evaluation
F. Locatello, S. Bauer, M. Lucic, G. Rätsch, S. Gelly, B. Schölkopf, O. Bachem, Journal of Machine Learning Research 21 (2020).
[Published Version] View | Download Published Version (ext.) | arXiv
 

2020 | Published | Conference Paper | IST-REx-ID: 14188 | OA
Weakly-supervised disentanglement without compromises
F. Locatello, B. Poole, G. Rätsch, B. Schölkopf, O. Bachem, M. Tschannen, in:, Proceedings of the 37th International Conference on Machine Learning, 2020, pp. 6348–6359.
[Preprint] View | Download Preprint (ext.) | arXiv
 

2020 | Published | Journal Article | IST-REx-ID: 14125 | OA
SCIM: Universal single-cell matching with unpaired feature sets
Stark SG et al. 2020. SCIM: Universal single-cell matching with unpaired feature sets. Bioinformatics. 36(Supplement_2), i919–i927.
[Published Version] View | Files available | DOI | Download Published Version (ext.) | PubMed | Europe PMC
 

2020 | Published | Conference Paper | IST-REx-ID: 14186 | OA
A commentary on the unsupervised learning of disentangled representations
F. Locatello, S. Bauer, M. Lucic, G. Rätsch, S. Gelly, B. Schölkopf, O. Bachem, in:, The 34th AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence, 2020, pp. 13681–13684.
[Preprint] View | DOI | Download Preprint (ext.) | arXiv
 

2020 | Published | Conference Paper | IST-REx-ID: 14187 | OA
Stochastic Frank-Wolfe for constrained finite-sum minimization
G. Négiar, G. Dresdner, A. Tsai, L.E. Ghaoui, F. Locatello, R.M. Freund, F. Pedregosa, in:, Proceedings of the 37th International Conference on Machine Learning, 2020, pp. 7253–7262.
[Preprint] View | Download Preprint (ext.) | arXiv
 

2020 | Published | Conference Paper | IST-REx-ID: 14326 | OA
Object-centric learning with slot attention
F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit, A. Dosovitskiy, T. Kipf, in:, Advances in Neural Information Processing Systems, Curran Associates, 2020, pp. 11525–11538.
[Preprint] View | Download Preprint (ext.) | arXiv
 

2019 | Published | Conference Paper | IST-REx-ID: 14193 | OA
Are disentangled representations helpful for abstract visual reasoning?
S. van Steenkiste, F. Locatello, J. Schmidhuber, O. Bachem, in:, Advances in Neural Information Processing Systems, 2019.
[Preprint] View | Download Preprint (ext.) | arXiv
 

2019 | Published | Conference Paper | IST-REx-ID: 14200 | OA
Challenging common assumptions in the unsupervised learning of disentangled representations
F. Locatello, S. Bauer, M. Lucic, G. Rätsch, S. Gelly, B. Schölkopf, O. Bachem, in:, Proceedings of the 36th International Conference on Machine Learning, ML Research Press, 2019, pp. 4114–4124.
[Preprint] View | Download Preprint (ext.) | arXiv
 

2019 | Published | Conference Paper | IST-REx-ID: 14197 | OA
On the fairness of disentangled representations
F. Locatello, G. Abbati, T. Rainforth, S. Bauer, B. Schölkopf, O. Bachem, in:, Advances in Neural Information Processing Systems, 2019, pp. 14611–14624.
[Preprint] View | Download Preprint (ext.) | arXiv
 

2019 | Published | Conference Paper | IST-REx-ID: 14184 | OA
Disentangling factors of variation using few labels
F. Locatello, M. Tschannen, S. Bauer, G. Rätsch, B. Schölkopf, O. Bachem, in:, 8th International Conference on Learning Representations, 2019.
[Preprint] View | Download Preprint (ext.) | arXiv
 

Filters and Search Terms

department=FrLo

Search

Filter Publications

Display / Sort

Export / Embed