Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
72 Publications
2021 | Published | Conference Paper | IST-REx-ID: 14180 |
Dynamic inference with neural interpreters
N. Rahaman, M.W. Gondal, S. Joshi, P. Gehler, Y. Bengio, F. Locatello, B. Schölkopf, in:, Advances in Neural Information Processing Systems, 2021, pp. 10985–10998.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
N. Rahaman, M.W. Gondal, S. Joshi, P. Gehler, Y. Bengio, F. Locatello, B. Schölkopf, in:, Advances in Neural Information Processing Systems, 2021, pp. 10985–10998.
2021 | Submitted | Preprint | IST-REx-ID: 14221 |
Enforcing and discovering structure in machine learning
F. Locatello, ArXiv (n.d.).
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
F. Locatello, ArXiv (n.d.).
2021 | Published | Journal Article | IST-REx-ID: 14117 |
Toward causal representation learning
B. Scholkopf, F. Locatello, S. Bauer, N.R. Ke, N. Kalchbrenner, A. Goyal, Y. Bengio, Proceedings of the IEEE 109 (2021) 612–634.
[Published Version]
View
| DOI
| Download Published Version (ext.)
| arXiv
B. Scholkopf, F. Locatello, S. Bauer, N.R. Ke, N. Kalchbrenner, A. Goyal, Y. Bengio, Proceedings of the IEEE 109 (2021) 612–634.
2021 | Published | Conference Paper | IST-REx-ID: 14176 |
Neighborhood contrastive learning applied to online patient monitoring
H. Yèche, G. Dresdner, F. Locatello, M. Hüser, G. Rätsch, in:, Proceedings of 38th International Conference on Machine Learning, ML Research Press, 2021, pp. 11964–11974.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
H. Yèche, G. Dresdner, F. Locatello, M. Hüser, G. Rätsch, in:, Proceedings of 38th International Conference on Machine Learning, ML Research Press, 2021, pp. 11964–11974.
2021 | Published | Conference Paper | IST-REx-ID: 14177 |
On disentangled representations learned from correlated data
F. Träuble, E. Creager, N. Kilbertus, F. Locatello, A. Dittadi, A. Goyal, B. Schölkopf, S. Bauer, in:, Proceedings of the 38th International Conference on Machine Learning, ML Research Press, 2021, pp. 10401–10412.
[Published Version]
View
| Download Published Version (ext.)
| arXiv
F. Träuble, E. Creager, N. Kilbertus, F. Locatello, A. Dittadi, A. Goyal, B. Schölkopf, S. Bauer, in:, Proceedings of the 38th International Conference on Machine Learning, ML Research Press, 2021, pp. 10401–10412.
2021 | Published | Conference Paper | IST-REx-ID: 14178 |
On the transfer of disentangled representations in realistic settings
A. Dittadi, F. Träuble, F. Locatello, M. Wüthrich, V. Agrawal, O. Winther, S. Bauer, B. Schölkopf, in:, The Ninth International Conference on Learning Representations, 2021.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
A. Dittadi, F. Träuble, F. Locatello, M. Wüthrich, V. Agrawal, O. Winther, S. Bauer, B. Schölkopf, in:, The Ninth International Conference on Learning Representations, 2021.
2021 | Published | Conference Paper | IST-REx-ID: 14179 |
Self-supervised learning with data augmentations provably isolates content from style
J. von Kügelgen, Y. Sharma, L. Gresele, W. Brendel, B. Schölkopf, M. Besserve, F. Locatello, in:, Advances in Neural Information Processing Systems, 2021, pp. 16451–16467.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
J. von Kügelgen, Y. Sharma, L. Gresele, W. Brendel, B. Schölkopf, M. Besserve, F. Locatello, in:, Advances in Neural Information Processing Systems, 2021, pp. 16451–16467.
2021 | Published | Conference Paper | IST-REx-ID: 14181 |
Boosting variational inference with locally adaptive step-sizes
G. Dresdner, S. Shekhar, F. Pedregosa, F. Locatello, G. Rätsch, in:, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence, 2021, pp. 2337–2343.
[Published Version]
View
| DOI
| Download Published Version (ext.)
| arXiv
G. Dresdner, S. Shekhar, F. Pedregosa, F. Locatello, G. Rätsch, in:, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence, 2021, pp. 2337–2343.
2021 | Published | Conference Paper | IST-REx-ID: 14182 |
Backward-compatible prediction updates: A probabilistic approach
F. Träuble, J. von Kügelgen, M. Kleindessner, F. Locatello, B. Schölkopf, P. Gehler, in:, 35th Conference on Neural Information Processing Systems, 2021, pp. 116–128.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
F. Träuble, J. von Kügelgen, M. Kleindessner, F. Locatello, B. Schölkopf, P. Gehler, in:, 35th Conference on Neural Information Processing Systems, 2021, pp. 116–128.
2021 | Published | Conference Paper | IST-REx-ID: 14332
Representation learning for out-of-distribution generalization in reinforcement learning
F. Träuble, A. Dittadi, M. Wuthrich, F. Widmaier, P.V. Gehler, O. Winther, F. Locatello, O. Bachem, B. Schölkopf, S. Bauer, in:, ICML 2021 Workshop on Unsupervised Reinforcement Learning, 2021.
View
F. Träuble, A. Dittadi, M. Wuthrich, F. Widmaier, P.V. Gehler, O. Winther, F. Locatello, O. Bachem, B. Schölkopf, S. Bauer, in:, ICML 2021 Workshop on Unsupervised Reinforcement Learning, 2021.
2020 | Published | Journal Article | IST-REx-ID: 14195 |
A sober look at the unsupervised learning of disentangled representations and their evaluation
F. Locatello, S. Bauer, M. Lucic, G. Rätsch, S. Gelly, B. Schölkopf, O. Bachem, Journal of Machine Learning Research 21 (2020).
[Published Version]
View
| Download Published Version (ext.)
| arXiv
F. Locatello, S. Bauer, M. Lucic, G. Rätsch, S. Gelly, B. Schölkopf, O. Bachem, Journal of Machine Learning Research 21 (2020).
2020 | Published | Conference Paper | IST-REx-ID: 14188 |
Weakly-supervised disentanglement without compromises
F. Locatello, B. Poole, G. Rätsch, B. Schölkopf, O. Bachem, M. Tschannen, in:, Proceedings of the 37th International Conference on Machine Learning, 2020, pp. 6348–6359.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
F. Locatello, B. Poole, G. Rätsch, B. Schölkopf, O. Bachem, M. Tschannen, in:, Proceedings of the 37th International Conference on Machine Learning, 2020, pp. 6348–6359.
2020 | Published | Journal Article | IST-REx-ID: 14125 |
SCIM: Universal single-cell matching with unpaired feature sets
Stark SG et al. 2020. SCIM: Universal single-cell matching with unpaired feature sets. Bioinformatics. 36(Supplement_2), i919–i927.
[Published Version]
View
| Files available
| DOI
| Download Published Version (ext.)
| PubMed | Europe PMC
Stark SG et al. 2020. SCIM: Universal single-cell matching with unpaired feature sets. Bioinformatics. 36(Supplement_2), i919–i927.
2020 | Published | Conference Paper | IST-REx-ID: 14186 |
A commentary on the unsupervised learning of disentangled representations
F. Locatello, S. Bauer, M. Lucic, G. Rätsch, S. Gelly, B. Schölkopf, O. Bachem, in:, The 34th AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence, 2020, pp. 13681–13684.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
F. Locatello, S. Bauer, M. Lucic, G. Rätsch, S. Gelly, B. Schölkopf, O. Bachem, in:, The 34th AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence, 2020, pp. 13681–13684.
2020 | Published | Conference Paper | IST-REx-ID: 14187 |
Stochastic Frank-Wolfe for constrained finite-sum minimization
G. Négiar, G. Dresdner, A. Tsai, L.E. Ghaoui, F. Locatello, R.M. Freund, F. Pedregosa, in:, Proceedings of the 37th International Conference on Machine Learning, 2020, pp. 7253–7262.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
G. Négiar, G. Dresdner, A. Tsai, L.E. Ghaoui, F. Locatello, R.M. Freund, F. Pedregosa, in:, Proceedings of the 37th International Conference on Machine Learning, 2020, pp. 7253–7262.
2020 | Published | Conference Paper | IST-REx-ID: 14326 |
Object-centric learning with slot attention
F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit, A. Dosovitskiy, T. Kipf, in:, Advances in Neural Information Processing Systems, Curran Associates, 2020, pp. 11525–11538.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit, A. Dosovitskiy, T. Kipf, in:, Advances in Neural Information Processing Systems, Curran Associates, 2020, pp. 11525–11538.
2019 | Published | Conference Paper | IST-REx-ID: 14193 |
Are disentangled representations helpful for abstract visual reasoning?
S. van Steenkiste, F. Locatello, J. Schmidhuber, O. Bachem, in:, Advances in Neural Information Processing Systems, 2019.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
S. van Steenkiste, F. Locatello, J. Schmidhuber, O. Bachem, in:, Advances in Neural Information Processing Systems, 2019.
2019 | Published | Conference Paper | IST-REx-ID: 14200 |
Challenging common assumptions in the unsupervised learning of disentangled representations
F. Locatello, S. Bauer, M. Lucic, G. Rätsch, S. Gelly, B. Schölkopf, O. Bachem, in:, Proceedings of the 36th International Conference on Machine Learning, ML Research Press, 2019, pp. 4114–4124.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
F. Locatello, S. Bauer, M. Lucic, G. Rätsch, S. Gelly, B. Schölkopf, O. Bachem, in:, Proceedings of the 36th International Conference on Machine Learning, ML Research Press, 2019, pp. 4114–4124.
2019 | Published | Conference Paper | IST-REx-ID: 14197 |
On the fairness of disentangled representations
F. Locatello, G. Abbati, T. Rainforth, S. Bauer, B. Schölkopf, O. Bachem, in:, Advances in Neural Information Processing Systems, 2019, pp. 14611–14624.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
F. Locatello, G. Abbati, T. Rainforth, S. Bauer, B. Schölkopf, O. Bachem, in:, Advances in Neural Information Processing Systems, 2019, pp. 14611–14624.
2019 | Published | Conference Paper | IST-REx-ID: 14184 |
Disentangling factors of variation using few labels
F. Locatello, M. Tschannen, S. Bauer, G. Rätsch, B. Schölkopf, O. Bachem, in:, 8th International Conference on Learning Representations, 2019.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
F. Locatello, M. Tschannen, S. Bauer, G. Rätsch, B. Schölkopf, O. Bachem, in:, 8th International Conference on Learning Representations, 2019.