Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
282 Publications
2018 | Published | Journal Article | IST-REx-ID: 409 |

Akopyan, A. (2018). On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. Elsevier. https://doi.org/10.1016/j.crma.2018.03.005
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 | Published | Thesis | IST-REx-ID: 201 |

Iglesias Ham, M. (2018). Multiple covers with balls. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1026
[Published Version]
View
| Files available
| DOI
2018 | Published | Conference Paper | IST-REx-ID: 187 |

Edelsbrunner, H., & Osang, G. F. (2018). The multi-cover persistence of Euclidean balls (Vol. 99). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.34
[Published Version]
View
| Files available
| DOI
2018 | Published | Journal Article | IST-REx-ID: 6355 |

Akopyan, A., & Avvakumov, S. (2018). Any cyclic quadrilateral can be inscribed in any closed convex smooth curve. Forum of Mathematics, Sigma. Cambridge University Press. https://doi.org/10.1017/fms.2018.7
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2018 | Published | Preprint | IST-REx-ID: 75 |

Akopyan, A., Avvakumov, S., & Karasev, R. (2018). Convex fair partitions into arbitrary number of pieces. arXiv. https://doi.org/10.48550/arXiv.1804.03057
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2018 | Published | Journal Article | IST-REx-ID: 87 |

Edelsbrunner, H., & Nikitenko, A. (2018). Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics. Annals of Applied Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/18-AAP1389
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 | Published | Journal Article | IST-REx-ID: 106 |

Akopyan, A., & Petrunin, A. (2018). Long geodesics on convex surfaces. Mathematical Intelligencer. Springer. https://doi.org/10.1007/s00283-018-9795-5
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 | Published | Journal Article | IST-REx-ID: 1064 |

Akopyan, A., Balitskiy, A., & Grigorev, M. (2018). On the circle covering theorem by A.W. Goodman and R.E. Goodman. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-017-9883-x
[Published Version]
View
| Files available
| DOI
| WoS
2018 | Published | Journal Article | IST-REx-ID: 312 |

Edelsbrunner, H., & Iglesias Ham, M. (2018). On the optimality of the FCC lattice for soft sphere packing. SIAM J Discrete Math. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/16M1097201
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
2018 | Published | Journal Article | IST-REx-ID: 458 |

Akopyan, A., & Bobenko, A. (2018). Incircular nets and confocal conics. Transactions of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/tran/7292
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
2018 | Published | Journal Article | IST-REx-ID: 530 |

Edelsbrunner, H., & Iglesias Ham, M. (2018). Multiple covers with balls I: Inclusion–exclusion. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2017.06.014
[Preprint]
View
| Files available
| DOI
| WoS
2018 | Published | Journal Article | IST-REx-ID: 58 |

Akopyan, A., & Segal Halevi, E. (2018). Counting blanks in polygonal arrangements. SIAM Journal on Discrete Mathematics. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/16M110407X
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 | Published | Conference Paper | IST-REx-ID: 188 |

Edelsbrunner, H., Virk, Z., & Wagner, H. (2018). Smallest enclosing spheres and Chernoff points in Bregman geometry (Vol. 99, p. 35:1-35:13). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.35
[Published Version]
View
| Files available
| DOI
2018 | Published | Conference Paper | IST-REx-ID: 193 |

Alwen, J. F., Gazi, P., Kamath Hosdurg, C., Klein, K., Osang, G. F., Pietrzak, K. Z., … Rybar, M. (2018). On the memory hardness of data independent password hashing functions. In Proceedings of the 2018 on Asia Conference on Computer and Communication Security (pp. 51–65). Incheon, Republic of Korea: ACM. https://doi.org/10.1145/3196494.3196534
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
2018 | Published | Journal Article | IST-REx-ID: 692 |

Akopyan, A. (2018). 3-Webs generated by confocal conics and circles. Geometriae Dedicata. Springer. https://doi.org/10.1007/s10711-017-0265-6
[Published Version]
View
| Files available
| DOI
| WoS
2017 | Published | Thesis | IST-REx-ID: 6287 |

Nikitenko, A. (2017). Discrete Morse theory for random complexes . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_873
[Published Version]
View
| Files available
| DOI
2017 | Published | Journal Article | IST-REx-ID: 718 |

Edelsbrunner, H., Nikitenko, A., & Reitzner, M. (2017). Expected sizes of poisson Delaunay mosaics and their discrete Morse functions. Advances in Applied Probability. Cambridge University Press. https://doi.org/10.1017/apr.2017.20
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2017 | Published | Journal Article | IST-REx-ID: 1022 |

Pranav, P., Edelsbrunner, H., Van De Weygaert, R., Vegter, G., Kerber, M., Jones, B., & Wintraecken, M. (2017). The topology of the cosmic web in terms of persistent Betti numbers. Monthly Notices of the Royal Astronomical Society. Oxford University Press. https://doi.org/10.1093/mnras/stw2862
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
2017 | Published | Journal Article | IST-REx-ID: 1065 |

Chatterjee, K., & Osang, G. F. (2017). Pushdown reachability with constant treewidth. Information Processing Letters. Elsevier. https://doi.org/10.1016/j.ipl.2017.02.003
[Submitted Version]
View
| Files available
| DOI
| WoS
2017 | Published | Journal Article | IST-REx-ID: 1072 |

Bauer, U., & Edelsbrunner, H. (2017). The Morse theory of Čech and delaunay complexes. Transactions of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/tran/6991
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv