Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
5 Publications
2024 | Published | Conference Paper | IST-REx-ID: 17898
Lechner, M., Hasani, R., Amini, A., Wang, T. H., Henzinger, T. A., & Rus, D. (2024). Overparametrization helps offline-to-online generalization of closed-loop control from pixels. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (pp. 2774–2782). Yokohama, Japan: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ICRA57147.2024.10610284
View
| DOI
| WoS
2023 | Published | Conference Paper | IST-REx-ID: 12976 |
Liao, K., Tricard, T., Piovarci, M., Seidel, H.-P., & Babaei, V. (2023). Learning deposition policies for fused multi-material 3D printing. In 2023 IEEE International Conference on Robotics and Automation (Vol. 2023, pp. 12345–12352). London, United Kingdom: IEEE. https://doi.org/10.1109/ICRA48891.2023.10160465
[Submitted Version]
View
| Files available
| DOI
| WoS
2022 | Published | Conference Paper | IST-REx-ID: 12010 |
Brunnbauer, A., Berducci, L., Brandstatter, A., Lechner, M., Hasani, R., Rus, D., & Grosu, R. (2022). Latent imagination facilitates zero-shot transfer in autonomous racing. In 2022 International Conference on Robotics and Automation (pp. 7513–7520). Philadelphia, PA, United States: IEEE. https://doi.org/10.1109/ICRA46639.2022.9811650
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 10666 |
Lechner, M., Hasani, R., Grosu, R., Rus, D., & Henzinger, T. A. (2021). Adversarial training is not ready for robot learning. In 2021 IEEE International Conference on Robotics and Automation (pp. 4140–4147). Xi’an, China. https://doi.org/10.1109/ICRA48506.2021.9561036
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 8704 |
Lechner, M., Hasani, R., Rus, D., & Grosu, R. (2020). Gershgorin loss stabilizes the recurrent neural network compartment of an end-to-end robot learning scheme. In Proceedings - IEEE International Conference on Robotics and Automation (pp. 5446–5452). Paris, France: IEEE. https://doi.org/10.1109/ICRA40945.2020.9196608
[Submitted Version]
View
| Files available
| DOI
| WoS